import streamlit as st import requests import pandas as pd from datetime import datetime, timedelta # Hard-coded API key for demonstration purposes API_KEY = "QR8F9B7T6R2SWTAT" def fetch_alpha_vantage_intraday(api_key, symbol): url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=1min&apikey={api_key}' response = requests.get(url) alpha_vantage_data = response.json() return alpha_vantage_data def main(): st.title("Latest Traded Data (Last Hour)") # User input for stock symbol symbol = st.text_input("Enter Stock Symbol (e.g., IBM):") if not symbol: st.warning("Please enter a valid stock symbol.") st.stop() # Use the hard-coded API key api_key = API_KEY # Set the time interval for fetching historical intraday data interval = 1 # 1-minute intervals # Fetch Alpha Vantage intraday data alpha_vantage_data = fetch_alpha_vantage_intraday(api_key, symbol) # Extract relevant data from Alpha Vantage response alpha_vantage_time_series = alpha_vantage_data.get(f'Time Series ({interval}min)', {}) df = pd.DataFrame(alpha_vantage_time_series).T df.index = pd.to_datetime(df.index) # Filter data for the last hour current_time = datetime.now() one_hour_ago = current_time - timedelta(hours=1) filtered_df = df[df.index >= one_hour_ago] # Display the latest traded data for the last hour st.subheader("Latest Traded Data (Last Hour):") st.write(filtered_df.tail(1)) if __name__ == "__main__": main()