File size: 6,065 Bytes
fed8daa
 
 
558f17d
fed8daa
 
 
a863b5d
fed8daa
a04e93d
fed8daa
 
 
a04e93d
 
fed8daa
 
7468f56
3bf44a5
 
 
 
fed8daa
a863b5d
cc0480d
a863b5d
cc0480d
 
 
 
 
 
 
 
 
 
 
 
a863b5d
 
 
 
 
 
 
 
 
 
 
3bf44a5
 
 
7468f56
a04e93d
000c673
fed8daa
a04e93d
fed8daa
3bf44a5
a04e93d
3bf44a5
 
fed8daa
a04e93d
 
 
fed8daa
a04e93d
fed8daa
a04e93d
fed8daa
 
a04e93d
fed8daa
 
 
 
 
 
 
a04e93d
 
 
 
 
 
fed8daa
 
 
 
 
a863b5d
 
 
 
 
a04e93d
3bf44a5
 
a04e93d
a863b5d
a04e93d
 
 
000c673
fed8daa
000c673
 
 
a04e93d
 
fed8daa
a04e93d
000c673
3bf44a5
 
a04e93d
 
000c673
 
 
fed8daa
a04e93d
fed8daa
 
a04e93d
 
71311de
3bf44a5
a04e93d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import os
import subprocess
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
import re

# Initialize the Flask app
app = Flask(__name__)
CORS(app)  # Enable CORS for all routes

# Initialize the InferenceClient with your Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN")  # Ensure to set your Hugging Face token in the environment
client = InferenceClient(token=HF_TOKEN)

# Hardcoded negative prompt
NEGATIVE_PROMPT_FINGERS = """2D,missing fingers, extra fingers, elongated fingers, fused fingers, 
mutated fingers, poorly drawn fingers, disfigured fingers, 
too many fingers, deformed hands, extra hands, malformed hands, 
blurry hands, disproportionate fingers"""

# Define the list of explicit keywords

EXPLICIT_KEYWORDS = [
    "sexual", "sex", "boobs", "boob", "breasts", "cleavage", "penis", "phallus", "porn", "pornography", "hentai", 
    "fetish", "nude", "nudity", "provocative", "obscene", "vulgar", "intimate", "kinky", "hardcore", 
    "threesome", "orgy", "masturbation", "masturbate", "genital", "genitals", "vagina", "vaginal", 
    "anus", "anal", "butt", "buttocks", "butthole", "ass", "prostate", "erection", "cum", "ejaculation", 
    "sperm", "semen", "naked", "bare", "lingerie", "thong", "striptease", "stripper", 
    "seductive", "sensual", "explicit", "lewd", "taboo", "NSFW", "bdsm", "dominatrix", "submission", 
    "intercourse", "penetration", "orgasm", "fuck", "fucking", "fuckers", "fucker", "slut", "whore", 
    "prostitute", "hooker", "escort", "camgirl", "camwhore", "sugar daddy", "sugar baby", "adult content", 
    "sexually explicit", "arousal", "lust", "depraved", "hardcore porn", "softcore", "erotic", "erotica",
    "roleplay", "incest", "taboo", "voyeur", "exhibitionist", "peeping", "dildo", "sex toy", "vibrator", 
    "suicide", "self-harm", "depression", "kill myself", "worthless", "abuse", "violence", "rape", 
    "sexual violence", "molestation", "pedophilia", "child porn", "underage", "illegal content"
]

# Function to scan the entire prompt for explicit keywords
def scan_prompt(prompt, keywords):
    # Create a regex pattern to match any keyword (case insensitive)
    pattern = r'\b(?:' + '|'.join(re.escape(keyword) for keyword in keywords) + r')\b'
    # Find all matches in the prompt
    matches = re.findall(pattern, prompt, flags=re.IGNORECASE)
    # Return True if matches are found, and the list of matched keywords
    return bool(matches), matches

@app.route('/')
def home():
    return "Welcome to the Image Background Remover!"

# Function to generate an image from a text prompt
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
    try:
        # Generate the image using Hugging Face's inference API with additional parameters
        image = client.text_to_image(
            prompt=prompt, 
            negative_prompt=NEGATIVE_PROMPT_FINGERS,
            height=height, 
            width=width, 
            model=model,
            num_inference_steps=num_inference_steps,  # Control the number of inference steps
            guidance_scale=guidance_scale,  # Control the guidance scale
            seed=seed  # Control the seed for reproducibility
        )
        return image  # Return the generated image
    except Exception as e:
        print(f"Error generating image: {str(e)}")
        return None

# Flask route for the API endpoint to generate an image
@app.route('/generate_image', methods=['POST'])
def generate_api():
    data = request.get_json()

    # Extract required fields from the request
    prompt = data.get('prompt', '')
    negative_prompt = data.get('negative_prompt', None)
    height = data.get('height', 1024)  # Default height
    width = data.get('width', 720)  # Default width
    num_inference_steps = data.get('num_inference_steps', 50)  # Default number of inference steps
    guidance_scale = data.get('guidance_scale', 7.5)  # Default guidance scale
    model_name = data.get('model', 'stabilityai/stable-diffusion-2-1')  # Default model
    seed = data.get('seed', None)  # Seed for reproducibility, default is None

    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400

    try:
        # Check for explicit content using scan_prompt
        is_nsfw, found_keywords = scan_prompt(prompt, EXPLICIT_KEYWORDS)
        if is_nsfw:
            print(f"Explicit keywords found: {found_keywords}")
            # Return the pre-defined "nsfw.jpg" image
            return send_file(
                "nsfw.jpg",
                mimetype='image/png',
                as_attachment=False,
                download_name='nsfw_detected.png'
            )

        # Call the generate_image function with the provided parameters
        image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)

        if image:
            # Save the image to a BytesIO object
            img_byte_arr = BytesIO()
            image.save(img_byte_arr, format='PNG')  # Convert the image to PNG
            img_byte_arr.seek(0)  # Move to the start of the byte stream

            # Send the generated image as a response
            return send_file(
                img_byte_arr, 
                mimetype='image/png', 
                as_attachment=False,  # Send the file as an attachment
                download_name='generated_image.png'  # The file name for download
            )
        else:
            return jsonify({"error": "Failed to generate image"}), 500
    except Exception as e:
        print(f"Error in generate_api: {str(e)}")  # Log the error
        return jsonify({"error": str(e)}), 500

# Add this block to make sure your app runs when called
if __name__ == "__main__":
    subprocess.Popen(["python", "wk.py"])  # Start awake.py

    app.run(host='0.0.0.0', port=7860)  # Run directly if needed for testing