Geek7 commited on
Commit
c8df413
·
verified ·
1 Parent(s): ea5636b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +145 -48
app.py CHANGED
@@ -1,53 +1,150 @@
1
- import random
2
- import torch
3
- from PIL import Image, ImageOps
4
- from diffusers import StableDiffusionInstructPix2PixPipeline
 
 
 
 
 
 
 
 
 
 
 
5
  import gradio as gr
6
 
7
- # Load model
8
- pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
9
- "timbrooks/instruct-pix2pix",
10
- torch_dtype=torch.float16, safety_checker=None
11
- ).to("cpu")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # Generate image
14
- def generate(input_image, instruction, steps, randomize_seed, seed, text_cfg_scale, image_cfg_scale):
15
- if randomize_seed:
16
- seed = random.randint(0, 100000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- # Resize the input image to 512x512 (Stable Diffusion requires square images)
19
- input_image = ImageOps.fit(input_image, (512, 512), method=Image.Resampling.LANCZOS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- generator = torch.manual_seed(seed)
22
- edited_image = pipe(
23
- instruction, image=input_image, guidance_scale=text_cfg_scale,
24
- image_guidance_scale=image_cfg_scale, num_inference_steps=steps,
25
- generator=generator
26
- ).images[0]
27
-
28
- return edited_image
29
-
30
- # Gradio interface
31
- def inference(input_image, instruction, steps=50, randomize_seed=True, seed=0, text_cfg_scale=7.5, image_cfg_scale=1.5):
32
- edited_image = generate(input_image, instruction, steps, randomize_seed, seed, text_cfg_scale, image_cfg_scale)
33
- return edited_image
34
-
35
- # Gradio app setup
36
- interface = gr.Interface(
37
- fn=inference,
38
- inputs=[
39
- gr.Image(type="pil", label="Upload Image"),
40
- gr.Textbox(lines=1, label="Instruction"),
41
- gr.Slider(20, 100, value=50, step=1, label="Steps"),
42
- gr.Checkbox(value=True, label="Randomize Seed"),
43
- gr.Number(value=random.randint(0, 10000), label="Seed"),
44
- gr.Slider(1.0, 10.0, value=7.5, step=0.1, label="Text CFG"),
45
- gr.Slider(0.5, 2.0, value=1.5, step=0.1, label="Image CFG")
46
- ],
47
- outputs=gr.Image(label="Edited Image"),
48
- title="InstructPix2Pix Image Editing",
49
- description="Upload an image and provide an instruction to edit the image using Stable Diffusion."
50
- )
51
-
52
- if __name__ == "__main__":
53
- interface.launch()
 
1
+ import os
2
+
3
+ import huggingface_hub, spaces
4
+ huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False)
5
+ os.system('ls _ckpt')
6
+
7
+ from PIL import Image
8
+
9
+ import numpy as np
10
+ import torch as T
11
+ import transformers, diffusers
12
+
13
+ from conversation import conv_templates
14
+ from mgie_llava import *
15
+
16
  import gradio as gr
17
 
18
+ def crop_resize(f, sz=512):
19
+ w, h = f.size
20
+ if w>h:
21
+ p = (w-h)//2
22
+ f = f.crop([p, 0, p+h, h])
23
+ elif h>w:
24
+ p = (h-w)//2
25
+ f = f.crop([0, p, w, p+w])
26
+ f = f.resize([sz, sz])
27
+ return f
28
+ def remove_alter(s): # hack expressive instruction
29
+ if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip()
30
+ if '</s>' in s: s = s[:s.index('</s>')].strip()
31
+ if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
32
+ if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
33
+ s = '.'.join([s.strip() for s in s.split('.')[:2]])
34
+ if s[-1]!='.': s += '.'
35
+ return s.strip()
36
+
37
+ DEFAULT_IMAGE_TOKEN = '<image>'
38
+ DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
39
+ DEFAULT_IM_START_TOKEN = '<im_start>'
40
+ DEFAULT_IM_END_TOKEN = '<im_end>'
41
+ PATH_LLAVA = '_ckpt/LLaVA-7B-v1'
42
+
43
+ tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
44
+ model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
45
+ image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16)
46
+
47
+ tokenizer.padding_side = 'left'
48
+ tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
49
+ model.resize_token_embeddings(len(tokenizer))
50
+ ckpt = T.load('_ckpt/mgie_7b/mllm.pt', map_location='cpu')
51
+ model.load_state_dict(ckpt, strict=False)
52
+
53
+ mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
54
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
55
+ if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
56
+
57
+ vision_tower = model.get_model().vision_tower[0]
58
+ vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda()
59
+ model.get_model().vision_tower[0] = vision_tower
60
+ vision_config = vision_tower.config
61
+ vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
62
+ vision_config.use_im_start_end = mm_use_im_start_end
63
+ if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
64
+ image_token_len = (vision_config.image_size//vision_config.patch_size)**2
65
 
66
+ _ = model.eval()
67
+
68
+ pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
69
+ pipe.set_progress_bar_config(disable=True)
70
+ pipe.unet.load_state_dict(T.load('_ckpt/mgie_7b/unet.pt', map_location='cpu'))
71
+ print('--init MGIE--')
72
+
73
+ @spaces.GPU(enable_queue=True)
74
+ def go_mgie(img, txt, seed, cfg_txt, cfg_img):
75
+ EMB = ckpt['emb'].cuda()
76
+ with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
77
+
78
+ img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
79
+ inp = img
80
+
81
+ img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
82
+ txt = "what will this image be like if '%s'"%(txt)
83
+ txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN
84
+ conv = conv_templates['vicuna_v1_1'].copy()
85
+ conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
86
+ txt = conv.get_prompt()
87
+ txt = tokenizer(txt)
88
+ txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
89
+
90
+ with T.inference_mode():
91
+ _ = model.cuda()
92
+ out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
93
+ do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
94
+ return_dict_in_generate=True, output_hidden_states=True)
95
+ out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
96
+
97
+ if 32003 in out: p = out.index(32003)-1
98
+ else: p = len(hid)-9
99
+ p = min(p, len(hid)-9)
100
+ hid = hid[p:p+8]
101
+
102
+ out = remove_alter(tokenizer.decode(out))
103
+ _ = model.cuda()
104
+ emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
105
+ res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
106
+ generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
107
+
108
+ return res, out
109
+
110
+ def go_example(seed, cfg_txt, cfg_img):
111
+ ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
112
+ 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
113
+ 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
114
+ 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
115
+ 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
116
+ i = T.randint(len(ins), (1, )).item()
117
 
118
+ return './_input/%d.jpg'%(i), ins[i], seed, cfg_txt, cfg_img
119
+
120
+ go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5)
121
+ print('--init GO--')
122
+
123
+ with gr.Blocks() as app:
124
+ gr.Markdown(
125
+ """
126
+ # [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br>
127
+ 🔔 this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br>
128
+ 🔔 a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br>
129
+ 🔔 if the building process takes too long, please try refreshing the page
130
+ """
131
+ )
132
+ with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
133
+ gr.Image(height=384, width=384, label='Goal Image', interactive=True)]
134
+ with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True),
135
+ gr.Textbox(label='Expressive Instruction', interactive=False)]
136
+ with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
137
+ gr.Number(value=7.5, label='Text CFG', interactive=True),
138
+ gr.Number(value=1.5, label='Image CFG', interactive=True)]
139
+ with gr.Row(): btn_exp, btn_sub = [gr.Button('More Example'), gr.Button('Submit')]
140
+ btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img])
141
+ btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
142
+
143
+ ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
144
+ 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
145
+ 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
146
+ 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
147
+ 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
148
+ gr.Examples(examples=[['./_input/%d.jpg'%(i), ins[i]] for i in [1, 5, 8, 14, 16]], inputs=[inp, txt])
149
 
150
+ app.launch()