GeekTony commited on
Commit
f70edb8
·
1 Parent(s): 349aadf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+
4
+ # Define the datasets as Python list dictionaries
5
+ natural_events = [
6
+ {'location': 'Australia', 'type': 'Wildfires', 'year': 2019, 'effect': 'Temperature increase'},
7
+ {'location': 'Brazil', 'type': 'Deforestation', 'year': 2020, 'effect': 'CO2 emissions'},
8
+ {'location': 'Indonesia', 'type': 'Forest fires', 'year': 2015, 'effect': 'Air pollution'},
9
+ {'location': 'USA', 'type': 'Heat waves', 'year': 2012, 'effect': 'Crop yield reduction'},
10
+ {'location': 'Russia', 'type': 'Melting permafrost', 'year': 2016, 'effect': 'Methane emissions'}
11
+ ]
12
+
13
+ population_growth = [
14
+ {'year': 2019, 'country': 'India', 'growth_rate': 1.08},
15
+ {'year': 2020, 'country': 'Nigeria', 'growth_rate': 2.58},
16
+ {'year': 2015, 'country': 'China', 'growth_rate': 0.48},
17
+ {'year': 2012, 'country': 'Ethiopia', 'growth_rate': 2.89},
18
+ {'year': 2016, 'country': 'India', 'growth_rate': 1.18}
19
+ ]
20
+
21
+ # Convert the datasets to Pandas DataFrames
22
+ natural_events_df = pd.DataFrame(natural_events)
23
+ population_growth_df = pd.DataFrame(population_growth)
24
+
25
+ # Merge the two DataFrames on the year column
26
+ merged_df = pd.merge(natural_events_df, population_growth_df, on='year')
27
+
28
+ # Calculate the total population growth for each event and add it to the merged DataFrame
29
+ merged_df['total_growth'] = merged_df['growth_rate'] * 1000000
30
+
31
+ # Display the merged DataFrame in the Streamlit app
32
+ st.write(merged_df)