import pandas as pd import streamlit as st # Define the datasets as Python list dictionaries natural_events = [ {'location': 'Australia', 'type': 'Wildfires', 'year': 2019, 'effect': 'Temperature increase'}, {'location': 'Brazil', 'type': 'Deforestation', 'year': 2020, 'effect': 'CO2 emissions'}, {'location': 'Indonesia', 'type': 'Forest fires', 'year': 2015, 'effect': 'Air pollution'}, {'location': 'USA', 'type': 'Heat waves', 'year': 2012, 'effect': 'Crop yield reduction'}, {'location': 'Russia', 'type': 'Melting permafrost', 'year': 2016, 'effect': 'Methane emissions'} ] population_growth = [ {'year': 2019, 'country': 'India', 'growth_rate': 1.08}, {'year': 2020, 'country': 'Nigeria', 'growth_rate': 2.58}, {'year': 2015, 'country': 'China', 'growth_rate': 0.48}, {'year': 2012, 'country': 'Ethiopia', 'growth_rate': 2.89}, {'year': 2016, 'country': 'India', 'growth_rate': 1.18} ] # Convert the datasets to Pandas DataFrames natural_events_df = pd.DataFrame(natural_events) population_growth_df = pd.DataFrame(population_growth) # Merge the two DataFrames on the year column merged_df = pd.merge(natural_events_df, population_growth_df, on='year') # Calculate the total population growth for each event and add it to the merged DataFrame merged_df['total_growth'] = merged_df['growth_rate'] * 1000000 # Display the merged DataFrame in the Streamlit app st.write(merged_df)