Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,516 Bytes
8588d27 f4114be 2ab86fb c035c39 f4114be 8588d27 ab00ded f4114be ab00ded 8588d27 ab00ded 8588d27 2ab86fb 8588d27 c035c39 8588d27 82cc8c9 8588d27 82cc8c9 18ba928 f669463 8588d27 c035c39 8588d27 55f9bde f4114be 8588d27 c035c39 8588d27 88f1bc6 55f9bde 8588d27 c035c39 f669463 c035c39 8588d27 2ab86fb 55f9bde 8588d27 c035c39 8588d27 55f9bde 8588d27 82cc8c9 f669463 c035c39 55f9bde c035c39 8588d27 c035c39 8588d27 f4114be c035c39 2ab86fb c035c39 8588d27 c035c39 8588d27 2ab86fb c035c39 f4114be c035c39 2ab86fb c035c39 8588d27 c035c39 8588d27 f4114be 8588d27 f4114be 2ab86fb 8588d27 f4114be c035c39 8588d27 c035c39 8588d27 f4114be 2ab86fb 8588d27 c035c39 8588d27 c035c39 f4114be 8588d27 f4114be 8588d27 c035c39 8588d27 c035c39 8588d27 c035c39 8588d27 2ab86fb c035c39 2ab86fb 8588d27 c035c39 2ab86fb 8588d27 c035c39 8588d27 c035c39 8588d27 2ab86fb 8588d27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# app.py
import os
import sys
# --- Install Dependencies ---
print("Installing required packages: diffusers, gradio_imageslider, huggingface-hub…")
os.system("pip install --no-input diffusers gradio_imageslider huggingface-hub")
# --- Standard Imports ---
import logging
import random
import warnings
import io
import base64
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image, ImageOps
from huggingface_hub import snapshot_download
# --- Logging & Device Setup ---
logging.basicConfig(level=logging.INFO)
warnings.filterwarnings("ignore")
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
torch_dtype = torch.bfloat16
else:
power_device = "CPU"
device = "cpu"
torch_dtype = torch.float32
logging.info(f"Running on device={device} with dtype={torch_dtype}")
# --- Model IDs & Download (no token) ---
flux_model_id = "black-forest-labs/FLUX.1-dev"
controlnet_model_id = "jasperai/Flux.1-dev-Controlnet-Upscaler"
local_model_dir = flux_model_id.split("/")[-1]
pipe = None
try:
logging.info(f"Downloading base model: {flux_model_id}")
model_path = snapshot_download(
repo_id=flux_model_id,
repo_type="model",
local_dir=local_model_dir,
ignore_patterns=["*.md", "*.gitattributes"],
)
logging.info(f"Downloaded base model to: {model_path}")
logging.info(f"Loading ControlNet: {controlnet_model_id}")
controlnet = FluxControlNetModel.from_pretrained(
controlnet_model_id,
torch_dtype=torch_dtype
).to(device)
logging.info("ControlNet loaded.")
logging.info("Initializing FluxControlNetPipeline…")
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
torch_dtype=torch_dtype
).to(device)
logging.info("Pipeline ready.")
except Exception as e:
logging.error(f"Error loading models: {e}", exc_info=True)
print(f"FATAL: could not load models: {e}")
sys.exit(1)
# --- Constants & Helpers ---
MAX_SEED = 2**32 - 1
MAX_PIXEL_BUDGET = 1280 * 1280
INTERNAL_PROCESSING_FACTOR = 4
def process_input(input_image):
if input_image is None:
raise gr.Error("No input image provided!")
img = ImageOps.exif_transpose(input_image)
if img.mode != "RGB":
img = img.convert("RGB")
w, h = img.size
# enforce intermediate‐scale budget
target_px = (w*INTERNAL_PROCESSING_FACTOR)*(h*INTERNAL_PROCESSING_FACTOR)
if target_px > MAX_PIXEL_BUDGET:
max_in = MAX_PIXEL_BUDGET / (INTERNAL_PROCESSING_FACTOR**2)
scale = (max_in / (w*h))**0.5
w2, h2 = max(8,int(w*scale)), max(8,int(h*scale))
img = img.resize((w2,h2), Image.Resampling.LANCZOS)
was_resized = True
else:
was_resized = False
# round dimensions to multiples of 8
w2, h2 = img.size
w2 -= w2 % 8; h2 -= h2 % 8
if img.size != (w2,h2):
img = img.resize((w2,h2), Image.Resampling.LANCZOS)
return img, w, h, was_resized
@spaces.GPU(duration=75)
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
final_upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
global pipe
if pipe is None:
raise gr.Error("Pipeline not loaded.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
final_upscale_factor = int(final_upscale_factor)
processed, w0, h0, resized_flag = process_input(input_image)
w_proc, h_proc = processed.size
# prepare control image at INTERNAL scale
cw, ch = w_proc*INTERNAL_PROCESSING_FACTOR, h_proc*INTERNAL_PROCESSING_FACTOR
control_img = processed.resize((cw, ch), Image.Resampling.LANCZOS)
gen = torch.Generator(device=device).manual_seed(seed)
with torch.inference_mode():
result = pipe(
prompt="",
control_image=control_img,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
height=ch, width=cw,
generator=gen
).images[0]
# final resize to user factor
if resized_flag:
fw, fh = w_proc*final_upscale_factor, h_proc*final_upscale_factor
else:
fw, fh = w0*final_upscale_factor, h0*final_upscale_factor
if (fw, fh) != result.size:
result = result.resize((fw, fh), Image.Resampling.LANCZOS)
buf = io.BytesIO()
result.save(buf, format="WEBP", quality=90)
b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
return [[input_image, result], seed, f"data:image/webp;base64,{b64}"]
# --- Gradio UI ---
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as demo:
gr.Markdown(f"""
# ⚡ Flux.1‑dev Upscaler
**Device:** {power_device} · **Internal scale:** {INTERNAL_PROCESSING_FACTOR}x · **Budget:** {MAX_PIXEL_BUDGET} px
""")
with gr.Row():
with gr.Column(scale=2):
inp = gr.Image(label="Input Image", type="pil", sources=["upload","clipboard"], height=350)
with gr.Column(scale=1):
upf = gr.Slider("Final Upscale Factor", 1, INTERNAL_PROCESSING_FACTOR, step=1, value=2)
steps = gr.Slider("Inference Steps", 4, 50, step=1, value=15)
cscale= gr.Slider("ControlNet Scale", 0.0, 1.5, step=0.05, value=0.6)
with gr.Row():
sld = gr.Slider("Seed", 0, MAX_SEED, step=1, value=42)
rnd = gr.Checkbox("Randomize", value=True, scale=0, min_width=80)
btn = gr.Button("⚡ Upscale Image", variant="primary")
slider = ImageSlider("Input / Output", type="pil", interactive=False, show_label=True, position=0.5)
out_seed= gr.Textbox("Seed Used", interactive=False, visible=True)
out_b64 = gr.Textbox("API Base64 Output", interactive=False, visible=False)
btn.click(
fn=infer,
inputs=[sld, rnd, inp, steps, upf, cscale],
outputs=[slider, out_seed, out_b64],
api_name="upscale"
)
# Expose JSON API at /run/upscale
demo.queue(max_size=10).launch(share=False, show_api=True)
|