GFPGAN-Fix / app.py
Gemini899's picture
Update app.py
88f1bc6 verified
raw
history blame
7.67 kB
import os
import sys
# Force install a Gradio version that is compatible with Spaces
os.system("pip uninstall -y gradio gradio-client")
os.system("pip install gradio==4.13.0") # This version should be compatible with Spaces
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
import spaces
# download weights - using try/except to handle potential errors
try:
if not os.path.exists('realesr-general-x4v3.pth'):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
except Exception as e:
print(f"Error downloading model weights: {e}")
# Download sample images - using try/except to handle potential errors
try:
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
'lincoln.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
'AI-generate.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
'Blake_Lively.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
'10045.png')
except Exception as e:
print(f"Error downloading sample images: {e}")
# background enhancer with RealESRGAN
try:
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
print("Successfully created upsampler")
except Exception as e:
print(f"Error creating model or upsampler: {e}")
upsampler = None
os.makedirs('output', exist_ok=True)
# Apply the spaces.GPU decorator to enable ZeroGPU allocation
@spaces.GPU(duration=90)
def inference(img, version, scale):
try:
print(f"Processing image: {img}, version: {version}, scale: {scale}")
if scale > 4:
scale = 4 # avoid too large scale value
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if img is None:
print(f"Failed to read image: {img}")
return None, None
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
print('too large size')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if upsampler is None:
print("Upsampler not initialized")
return None, None
if version == 'v1.2':
face_enhancer = GFPGANer(
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.3':
face_enhancer = GFPGANer(
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.4':
face_enhancer = GFPGANer(
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'RestoreFormer':
face_enhancer = GFPGANer(
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
else:
print(f"Unknown version: {version}")
return None, None
print(f"Using {version} for enhancement")
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
except Exception as error:
import traceback
print(f"Error in inference: {error}")
print(traceback.format_exc())
return None, None
title = "GFPGAN: Practical Face Restoration Algorithm"
description = "Gradio demo Fix for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>It can be used to restore your <b>old photos</b> or improve <b>AI-generated faces</b>.<br>To use it, simply upload your image.<br>If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/Nick088Official/GFPGAN-Fix' target='_blank'>Github Repo</a> and recommend it to your friends 😊"
# Simplified article text to avoid URL parsing issues
article = "If you have any question, please email [email protected] or [email protected] (original creators)."
# Create the interface with more robust error handling
try:
print("Creating Gradio interface...")
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
gr.Number(label="Rescaling factor", value=2),
],
outputs=[
gr.Image(type="numpy", label="Output (The whole image)"),
gr.File(label="Download the output image")
],
title=title,
description=description,
article=article,
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
['10045.png', 'v1.4', 2]]
)
# Launch with the simplest possible configuration
print("Launching Gradio interface...")
demo.launch(server_name="0.0.0.0")
except Exception as e:
import traceback
print(f"Error setting up Gradio interface: {e}")
print(traceback.format_exc())