File size: 5,403 Bytes
d101062
9c5d561
327dc47
6b4e294
48b8b8d
d101062
 
 
 
6b4e294
d101062
fe92109
48b8b8d
d101062
 
327dc47
6b4e294
ce193d2
d101062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d1db7
ce193d2
d101062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48b8b8d
d101062
 
 
 
 
 
 
 
 
 
327dc47
 
 
 
 
9c5d561
 
 
d101062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5d561
 
d101062
 
 
 
327dc47
d101062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5d561
 
 
d101062
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import spaces
import gradio as gr
import re
from PIL import Image

import os
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)



def sanitize_prompt(prompt):
  # Allow only alphanumeric characters, spaces, and basic punctuation
  allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
  sanitized_prompt = allowed_chars.sub("", prompt)
  return sanitized_prompt

def convert_to_fit_size(original_width_and_height, maximum_size = 1024):
    width, height =original_width_and_height
    if width <= maximum_size and height <= maximum_size:
        return width,height
    
    if width > height:
        scaling_factor = maximum_size / width
    else:
        scaling_factor = maximum_size / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)
    return new_width, new_height

def adjust_to_multiple_of_32(width: int, height: int):
    width = width - (width % 32)
    height = height - (height % 32)
    return width, height




@spaces.GPU(duration=120)
def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
    #print("start process_images")
    progress(0, desc="Starting")


    def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
        if image is None:
            print("empty input image returned")
            return None
        generator = torch.Generator(device).manual_seed(seed)
        fit_width, fit_height = convert_to_fit_size(image.size)
        width, height = adjust_to_multiple_of_32(fit_width, fit_height)
        image = image.resize((width, height), Image.LANCZOS)
    
        output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height,
                    guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256)
    
        pil_image = output.images[0]
        new_width, new_height = pil_image.size
    
        if (new_width != fit_width) or (new_height != fit_height):
            resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
            return resized_image
        return pil_image
    
    output = process_img2img(image, prompt, strength, seed, inference_step)
    return output

    

def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}

"""

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
                            
                    btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
                            seed = gr.Number(value=100, minimum=0, step=1, label="seed")
                            inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
                        id_input=gr.Text(label="Name", visible=False)
                            
                with gr.Column():
                    image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
                   

                    
            

    gr.Examples(
               examples=[
                    ["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
                    ["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
                    ["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
                    ["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
                         ]
,
                inputs=[image,image_out,prompt],
    )
    gr.HTML(
       gr.HTML(read_file("demo_footer.html"))
    )
    gr.on(
        triggers=[btn.click, prompt.submit],
        fn = process_images,
        inputs = [image,prompt,strength,seed,inference_step],
        outputs = [image_out]
    )

if __name__ == "__main__":
    demo.launch(share=True, show_error=True)