Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,76 +2,59 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
-
from diffusers import
|
10 |
|
11 |
-
# Use
|
12 |
-
dtype = torch.
|
13 |
-
device = "cpu"
|
14 |
|
15 |
-
# Load the
|
16 |
-
pipe =
|
|
|
17 |
|
18 |
def sanitize_prompt(prompt):
|
19 |
-
# Allow only alphanumeric characters, spaces, and basic punctuation
|
20 |
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
21 |
-
|
22 |
-
return sanitized_prompt
|
23 |
|
24 |
def convert_to_fit_size(original_width_and_height, maximum_size=2048):
|
25 |
width, height = original_width_and_height
|
26 |
if width <= maximum_size and height <= maximum_size:
|
27 |
return width, height
|
28 |
-
|
29 |
-
|
30 |
-
scaling_factor = maximum_size / width
|
31 |
-
else:
|
32 |
-
scaling_factor = maximum_size / height
|
33 |
-
|
34 |
-
new_width = int(width * scaling_factor)
|
35 |
-
new_height = int(height * scaling_factor)
|
36 |
-
return new_width, new_height
|
37 |
|
38 |
def adjust_to_multiple_of_32(width: int, height: int):
|
39 |
-
width
|
40 |
-
height = height - (height % 32)
|
41 |
-
return width, height
|
42 |
-
|
43 |
-
@spaces.CPU(duration=120)
|
44 |
-
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
|
45 |
-
progress(0, desc="Starting")
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
if image is None:
|
49 |
-
print("
|
50 |
return None
|
51 |
-
|
52 |
-
generator = torch.Generator("cpu").manual_seed(seed)
|
53 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
54 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
55 |
image = image.resize((width, height), Image.LANCZOS)
|
56 |
|
57 |
output = pipe(
|
58 |
prompt=prompt,
|
59 |
-
|
60 |
generator=generator,
|
61 |
strength=strength,
|
62 |
-
|
63 |
-
height=height,
|
64 |
-
guidance_scale=0,
|
65 |
num_inference_steps=num_inference_steps,
|
66 |
-
max_sequence_length=256
|
67 |
)
|
68 |
|
69 |
pil_image = output.images[0]
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
74 |
-
return resized_image
|
75 |
return pil_image
|
76 |
|
77 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
@@ -79,8 +62,7 @@ def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step
|
|
79 |
|
80 |
def read_file(path: str) -> str:
|
81 |
with open(path, 'r', encoding='utf-8') as f:
|
82 |
-
|
83 |
-
return content
|
84 |
|
85 |
css = """
|
86 |
#col-left {
|
@@ -95,15 +77,13 @@ css = """
|
|
95 |
display: flex;
|
96 |
align-items: center;
|
97 |
justify-content: center;
|
98 |
-
gap:10px
|
99 |
}
|
100 |
-
|
101 |
.image {
|
102 |
width: 128px;
|
103 |
height: 128px;
|
104 |
object-fit: cover;
|
105 |
}
|
106 |
-
|
107 |
.text {
|
108 |
font-size: 16px;
|
109 |
}
|
@@ -115,40 +95,26 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
115 |
gr.HTML(read_file("demo_tools.html"))
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
118 |
-
image = gr.Image(
|
119 |
-
height=800,
|
120 |
-
sources=['upload','clipboard'],
|
121 |
-
image_mode='RGB',
|
122 |
-
elem_id="image_upload",
|
123 |
-
type="pil",
|
124 |
-
label="Upload"
|
125 |
-
)
|
126 |
with gr.Row(elem_id="prompt-container", equal_height=False):
|
127 |
with gr.Row():
|
128 |
-
prompt = gr.Textbox(
|
129 |
-
label="Prompt",
|
130 |
-
value="a women",
|
131 |
-
placeholder="Your prompt (what you want in place of what is erased)",
|
132 |
-
elem_id="prompt"
|
133 |
-
)
|
134 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
135 |
-
|
136 |
with gr.Accordion(label="Advanced Settings", open=False):
|
137 |
with gr.Row(equal_height=True):
|
138 |
-
strength = gr.Number(value=0.75, minimum=0, maximum=0
|
139 |
-
seed = gr.Number(value=100, minimum=0, step=1, label="
|
140 |
-
inference_step = gr.Number(value=
|
141 |
id_input = gr.Text(label="Name", visible=False)
|
142 |
-
|
143 |
with gr.Column():
|
144 |
image_out = gr.Image(height=800, sources=[], label="Output", elem_id="output-img", format="jpg")
|
145 |
|
146 |
gr.Examples(
|
147 |
examples=[
|
148 |
-
["examples/draw_input.jpg", "examples/draw_output.jpg", "a
|
149 |
-
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a
|
150 |
-
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a
|
151 |
-
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a
|
152 |
],
|
153 |
inputs=[image, image_out, prompt],
|
154 |
)
|
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
9 |
|
10 |
+
# Use float16 for lower VRAM usage
|
11 |
+
dtype = torch.float16
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
+
# Load the lighter model on the GPU
|
15 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=dtype)
|
16 |
+
pipe.to(device)
|
17 |
|
18 |
def sanitize_prompt(prompt):
|
|
|
19 |
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
20 |
+
return allowed_chars.sub("", prompt)
|
|
|
21 |
|
22 |
def convert_to_fit_size(original_width_and_height, maximum_size=2048):
|
23 |
width, height = original_width_and_height
|
24 |
if width <= maximum_size and height <= maximum_size:
|
25 |
return width, height
|
26 |
+
scaling_factor = maximum_size / max(width, height)
|
27 |
+
return int(width * scaling_factor), int(height * scaling_factor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def adjust_to_multiple_of_32(width: int, height: int):
|
30 |
+
return width - (width % 32), height - (height % 32)
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
@spaces.GPU(duration=120)
|
33 |
+
def process_images(image, prompt="a woman", strength=0.75, seed=0, inference_step=50, progress=gr.Progress(track_tqdm=True)):
|
34 |
+
progress(0, desc="Starting processing")
|
35 |
+
|
36 |
+
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=50):
|
37 |
if image is None:
|
38 |
+
print("Empty input image returned")
|
39 |
return None
|
40 |
+
generator = torch.Generator(device).manual_seed(seed)
|
|
|
41 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
42 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
43 |
image = image.resize((width, height), Image.LANCZOS)
|
44 |
|
45 |
output = pipe(
|
46 |
prompt=prompt,
|
47 |
+
init_image=image,
|
48 |
generator=generator,
|
49 |
strength=strength,
|
50 |
+
guidance_scale=7.5,
|
|
|
|
|
51 |
num_inference_steps=num_inference_steps,
|
|
|
52 |
)
|
53 |
|
54 |
pil_image = output.images[0]
|
55 |
+
# Optionally, resize back to original fitted dimensions if desired
|
56 |
+
if pil_image.size != (fit_width, fit_height):
|
57 |
+
pil_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
|
|
|
|
58 |
return pil_image
|
59 |
|
60 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
|
|
62 |
|
63 |
def read_file(path: str) -> str:
|
64 |
with open(path, 'r', encoding='utf-8') as f:
|
65 |
+
return f.read()
|
|
|
66 |
|
67 |
css = """
|
68 |
#col-left {
|
|
|
77 |
display: flex;
|
78 |
align-items: center;
|
79 |
justify-content: center;
|
80 |
+
gap: 10px;
|
81 |
}
|
|
|
82 |
.image {
|
83 |
width: 128px;
|
84 |
height: 128px;
|
85 |
object-fit: cover;
|
86 |
}
|
|
|
87 |
.text {
|
88 |
font-size: 16px;
|
89 |
}
|
|
|
95 |
gr.HTML(read_file("demo_tools.html"))
|
96 |
with gr.Row():
|
97 |
with gr.Column():
|
98 |
+
image = gr.Image(height=800, sources=['upload','clipboard'], image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Row(elem_id="prompt-container", equal_height=False):
|
100 |
with gr.Row():
|
101 |
+
prompt = gr.Textbox(label="Prompt", value="a woman", placeholder="Your prompt", elem_id="prompt")
|
|
|
|
|
|
|
|
|
|
|
102 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
|
|
103 |
with gr.Accordion(label="Advanced Settings", open=False):
|
104 |
with gr.Row(equal_height=True):
|
105 |
+
strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Strength")
|
106 |
+
seed = gr.Number(value=100, minimum=0, step=1, label="Seed")
|
107 |
+
inference_step = gr.Number(value=50, minimum=1, step=1, label="Inference Steps")
|
108 |
id_input = gr.Text(label="Name", visible=False)
|
|
|
109 |
with gr.Column():
|
110 |
image_out = gr.Image(height=800, sources=[], label="Output", elem_id="output-img", format="jpg")
|
111 |
|
112 |
gr.Examples(
|
113 |
examples=[
|
114 |
+
["examples/draw_input.jpg", "examples/draw_output.jpg", "a woman with blue eyes"],
|
115 |
+
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a woman with a serene expression"],
|
116 |
+
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a woman in a garden"],
|
117 |
+
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a woman in a futuristic city"]
|
118 |
],
|
119 |
inputs=[image, image_out, prompt],
|
120 |
)
|