Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,34 +3,42 @@ import gradio as gr
|
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import os
|
|
|
|
|
|
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
-
|
9 |
-
# We'll lazy-load FluxImg2ImgPipeline
|
10 |
from diffusers import FluxImg2ImgPipeline
|
11 |
|
12 |
-
|
13 |
-
# GLOBAL PIPELINE REFERENCE (start as None, so we only load on first inference)
|
14 |
-
###############################################################################
|
15 |
pipe = None
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def sanitize_prompt(prompt):
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
-
def convert_to_fit_size(original_width_and_height, maximum_size=
|
26 |
-
"""
|
27 |
-
Resizes the image so its largest dimension = maximum_size (default 512).
|
28 |
-
Lower resolution => less VRAM usage.
|
29 |
-
"""
|
30 |
width, height = original_width_and_height
|
31 |
if width <= maximum_size and height <= maximum_size:
|
32 |
return width, height
|
33 |
-
|
34 |
if width > height:
|
35 |
scaling_factor = maximum_size / width
|
36 |
else:
|
@@ -41,123 +49,72 @@ def convert_to_fit_size(original_width_and_height, maximum_size=512):
|
|
41 |
return new_width, new_height
|
42 |
|
43 |
def adjust_to_multiple_of_32(width: int, height: int):
|
44 |
-
"""
|
45 |
-
Snap dimensions down to multiples of 32 (common for diffusion pipelines).
|
46 |
-
"""
|
47 |
width = width - (width % 32)
|
48 |
height = height - (height % 32)
|
49 |
-
return
|
50 |
-
|
51 |
-
def
|
52 |
-
"""
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
# 1) Load the pipeline using float16
|
62 |
-
local_pipe = FluxImg2ImgPipeline.from_pretrained(
|
63 |
-
"black-forest-labs/FLUX.1-schnell",
|
64 |
-
torch_dtype=torch.float16, # IMPORTANT: no bfloat16
|
65 |
-
low_cpu_mem_usage=True
|
66 |
-
)
|
67 |
-
local_pipe.to("cuda")
|
68 |
-
|
69 |
-
# 2) Enable memory-efficient attention (xFormers), if installed
|
70 |
-
try:
|
71 |
-
local_pipe.enable_xformers_memory_efficient_attention()
|
72 |
-
print("xFormers memory efficient attention enabled.")
|
73 |
-
except Exception as e:
|
74 |
-
print("Could not enable xFormers:", e)
|
75 |
-
|
76 |
-
# 3) CPU offload (keeps only active layers on GPU)
|
77 |
-
try:
|
78 |
-
local_pipe.enable_model_cpu_offload()
|
79 |
-
print("CPU offload enabled.")
|
80 |
-
except Exception as e:
|
81 |
-
print("Could not enable model_cpu_offload:", e)
|
82 |
-
|
83 |
-
# 4) VAE slicing reduces peak memory usage
|
84 |
-
local_pipe.enable_vae_slicing()
|
85 |
-
|
86 |
-
# 5) Optionally set max sequence length (like your original code)
|
87 |
-
local_pipe.max_sequence_length = 256
|
88 |
-
|
89 |
-
pipe = local_pipe
|
90 |
-
print("Flux pipeline loaded successfully (float16).")
|
91 |
-
return pipe
|
92 |
-
|
93 |
-
###############################################################################
|
94 |
-
# MAIN INFERENCE FUNCTION
|
95 |
-
###############################################################################
|
96 |
@spaces.GPU(duration=120)
|
97 |
-
def process_images(
|
98 |
-
image,
|
99 |
-
prompt="a girl",
|
100 |
-
strength=0.75,
|
101 |
-
seed=0,
|
102 |
-
inference_step=4,
|
103 |
-
progress=gr.Progress(track_tqdm=True)
|
104 |
-
):
|
105 |
progress(0, desc="Starting")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
# 1) Lazy-load the pipeline
|
108 |
-
local_pipe = load_flux_pipeline()
|
109 |
-
|
110 |
-
# 2) If no image provided
|
111 |
-
if image is None:
|
112 |
-
print("No input image provided.")
|
113 |
-
return None
|
114 |
-
|
115 |
-
# 3) Resize input to reduce VRAM usage
|
116 |
-
fit_width, fit_height = convert_to_fit_size(image.size, maximum_size=512)
|
117 |
-
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
118 |
-
|
119 |
-
# Use high-quality Lanczos resizing
|
120 |
-
image = image.resize((width, height), Image.LANCZOS)
|
121 |
-
|
122 |
-
# 4) Create generator for reproducibility
|
123 |
-
generator = torch.Generator("cuda").manual_seed(seed)
|
124 |
-
|
125 |
-
# 5) Actually run flux img2img
|
126 |
-
progress(50, desc="Running flux img2img")
|
127 |
-
print(f"Prompt: {prompt}, strength={strength}, steps={inference_step}")
|
128 |
-
|
129 |
-
output = local_pipe(
|
130 |
-
prompt=prompt,
|
131 |
-
image=image,
|
132 |
-
generator=generator,
|
133 |
-
strength=strength,
|
134 |
-
guidance_scale=0, # same as your original code
|
135 |
-
num_inference_steps=inference_step,
|
136 |
-
# We don't explicitly pass width & height. If you want, remove them or keep them:
|
137 |
-
# width=width,
|
138 |
-
# height=height,
|
139 |
-
)
|
140 |
-
|
141 |
-
pil_image = output.images[0]
|
142 |
-
|
143 |
-
# 6) If the new image was forcibly changed shape by the model,
|
144 |
-
# we can re-resize back to (fit_width, fit_height).
|
145 |
-
# Usually not necessary with flux, but keep the logic if you want.
|
146 |
-
new_w, new_h = pil_image.size
|
147 |
-
if (new_w != fit_width) or (new_h != fit_height):
|
148 |
-
pil_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
149 |
-
|
150 |
-
progress(100, desc="Done")
|
151 |
-
return pil_image
|
152 |
-
|
153 |
-
###############################################################################
|
154 |
-
# GRADIO APP
|
155 |
-
###############################################################################
|
156 |
def read_file(path: str) -> str:
|
157 |
with open(path, 'r', encoding='utf-8') as f:
|
158 |
-
|
|
|
159 |
|
160 |
-
css
|
161 |
#col-left {
|
162 |
margin: 0 auto;
|
163 |
max-width: 640px;
|
@@ -172,100 +129,60 @@ css = """
|
|
172 |
justify-content: center;
|
173 |
gap:10px
|
174 |
}
|
|
|
175 |
.image {
|
176 |
width: 128px;
|
177 |
height: 128px;
|
178 |
object-fit: cover;
|
179 |
}
|
|
|
180 |
.text {
|
181 |
font-size: 16px;
|
182 |
}
|
183 |
"""
|
184 |
|
185 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
186 |
-
|
187 |
-
try:
|
188 |
gr.HTML(read_file("demo_header.html"))
|
189 |
-
except:
|
190 |
-
pass
|
191 |
-
try:
|
192 |
gr.HTML(read_file("demo_tools.html"))
|
193 |
-
except:
|
194 |
-
pass
|
195 |
-
|
196 |
with gr.Row():
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
)
|
213 |
-
|
214 |
-
|
215 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
216 |
-
with gr.Row(equal_height=True):
|
217 |
-
strength = gr.Number(
|
218 |
-
value=0.75,
|
219 |
-
minimum=0,
|
220 |
-
maximum=0.75,
|
221 |
-
step=0.01,
|
222 |
-
label="strength"
|
223 |
-
)
|
224 |
-
seed = gr.Number(
|
225 |
-
value=100,
|
226 |
-
minimum=0,
|
227 |
-
step=1,
|
228 |
-
label="seed"
|
229 |
-
)
|
230 |
-
inference_step = gr.Number(
|
231 |
-
value=4,
|
232 |
-
minimum=1,
|
233 |
-
step=1,
|
234 |
-
label="inference_step"
|
235 |
-
)
|
236 |
-
id_input = gr.Text(label="Name", visible=False)
|
237 |
-
|
238 |
-
with gr.Column():
|
239 |
-
image_out = gr.Image(
|
240 |
-
height=800,
|
241 |
-
sources=[],
|
242 |
-
label="Output",
|
243 |
-
elem_id="output-img",
|
244 |
-
format="jpg"
|
245 |
-
)
|
246 |
-
|
247 |
-
# Provide example inputs if desired
|
248 |
gr.Examples(
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
)
|
255 |
-
|
256 |
-
# Possibly load a footer HTML
|
257 |
-
try:
|
258 |
-
gr.HTML(read_file("demo_footer.html"))
|
259 |
-
except:
|
260 |
-
pass
|
261 |
-
|
262 |
-
# Link UI events to process_images
|
263 |
gr.on(
|
264 |
triggers=[btn.click, prompt.submit],
|
265 |
-
fn=process_images,
|
266 |
-
inputs=[image,
|
267 |
-
outputs=[image_out]
|
268 |
)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
-
demo.launch(share=True, show_error=True)
|
|
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
+
|
7 |
+
# Set memory optimization flags
|
8 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
9 |
+
|
10 |
import numpy as np
|
11 |
import torch
|
|
|
|
|
12 |
from diffusers import FluxImg2ImgPipeline
|
13 |
|
14 |
+
# Global pipe variable for lazy loading
|
|
|
|
|
15 |
pipe = None
|
16 |
|
17 |
+
# Use float16 instead of bfloat16 for T4 compatibility
|
18 |
+
dtype = torch.float16
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
def get_pipe():
|
22 |
+
global pipe
|
23 |
+
if pipe is None:
|
24 |
+
pipe = FluxImg2ImgPipeline.from_pretrained(
|
25 |
+
"black-forest-labs/FLUX.1-schnell",
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
variant="fp16"
|
28 |
+
).to(device)
|
29 |
+
return pipe
|
30 |
+
|
31 |
def sanitize_prompt(prompt):
|
32 |
+
# Allow only alphanumeric characters, spaces, and basic punctuation
|
33 |
+
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
34 |
+
sanitized_prompt = allowed_chars.sub("", prompt)
|
35 |
+
return sanitized_prompt
|
36 |
|
37 |
+
def convert_to_fit_size(original_width_and_height, maximum_size = 1024):
|
|
|
|
|
|
|
|
|
38 |
width, height = original_width_and_height
|
39 |
if width <= maximum_size and height <= maximum_size:
|
40 |
return width, height
|
41 |
+
|
42 |
if width > height:
|
43 |
scaling_factor = maximum_size / width
|
44 |
else:
|
|
|
49 |
return new_width, new_height
|
50 |
|
51 |
def adjust_to_multiple_of_32(width: int, height: int):
|
|
|
|
|
|
|
52 |
width = width - (width % 32)
|
53 |
height = height - (height % 32)
|
54 |
+
return width, height
|
55 |
+
|
56 |
+
def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
|
57 |
+
"""Resizes image to fit within max_dim while preserving aspect ratio"""
|
58 |
+
w, h = image.size
|
59 |
+
ratio = min(max_dim / w, max_dim / h)
|
60 |
+
if ratio < 1.0:
|
61 |
+
new_w = int(w * ratio)
|
62 |
+
new_h = int(h * ratio)
|
63 |
+
image = image.resize((new_w, new_h), Image.LANCZOS)
|
64 |
+
return image
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
@spaces.GPU(duration=120)
|
67 |
+
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
progress(0, desc="Starting")
|
69 |
+
|
70 |
+
# Get the model using lazy loading
|
71 |
+
model = get_pipe()
|
72 |
+
|
73 |
+
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
74 |
+
if image is None:
|
75 |
+
print("empty input image returned")
|
76 |
+
return None
|
77 |
+
|
78 |
+
# Resize image to reduce memory usage
|
79 |
+
image = resize_image(image, max_dim=512)
|
80 |
+
|
81 |
+
generator = torch.Generator(device).manual_seed(seed)
|
82 |
+
fit_width, fit_height = convert_to_fit_size(image.size, maximum_size=512)
|
83 |
+
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
84 |
+
image = image.resize((width, height), Image.LANCZOS)
|
85 |
+
|
86 |
+
# Use autocast for better memory efficiency
|
87 |
+
with torch.cuda.amp.autocast(dtype=torch.float16):
|
88 |
+
with torch.no_grad():
|
89 |
+
output = model(
|
90 |
+
prompt=prompt,
|
91 |
+
image=image,
|
92 |
+
generator=generator,
|
93 |
+
strength=strength,
|
94 |
+
width=width,
|
95 |
+
height=height,
|
96 |
+
guidance_scale=0,
|
97 |
+
num_inference_steps=num_inference_steps,
|
98 |
+
max_sequence_length=256
|
99 |
+
)
|
100 |
+
|
101 |
+
pil_image = output.images[0]
|
102 |
+
new_width, new_height = pil_image.size
|
103 |
+
|
104 |
+
if (new_width != fit_width) or (new_height != fit_height):
|
105 |
+
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
106 |
+
return resized_image
|
107 |
+
return pil_image
|
108 |
+
|
109 |
+
output = process_img2img(image, prompt, strength, seed, inference_step)
|
110 |
+
return output
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def read_file(path: str) -> str:
|
113 |
with open(path, 'r', encoding='utf-8') as f:
|
114 |
+
content = f.read()
|
115 |
+
return content
|
116 |
|
117 |
+
css="""
|
118 |
#col-left {
|
119 |
margin: 0 auto;
|
120 |
max-width: 640px;
|
|
|
129 |
justify-content: center;
|
130 |
gap:10px
|
131 |
}
|
132 |
+
|
133 |
.image {
|
134 |
width: 128px;
|
135 |
height: 128px;
|
136 |
object-fit: cover;
|
137 |
}
|
138 |
+
|
139 |
.text {
|
140 |
font-size: 16px;
|
141 |
}
|
142 |
"""
|
143 |
|
144 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
145 |
+
with gr.Column():
|
|
|
146 |
gr.HTML(read_file("demo_header.html"))
|
|
|
|
|
|
|
147 |
gr.HTML(read_file("demo_tools.html"))
|
|
|
|
|
|
|
148 |
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
|
151 |
+
with gr.Row(elem_id="prompt-container", equal_height=False):
|
152 |
+
with gr.Row():
|
153 |
+
prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
|
154 |
+
|
155 |
+
btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
|
156 |
+
|
157 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
158 |
+
with gr.Row( equal_height=True):
|
159 |
+
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
|
160 |
+
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
|
161 |
+
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
|
162 |
+
id_input=gr.Text(label="Name", visible=False)
|
163 |
+
|
164 |
+
with gr.Column():
|
165 |
+
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
gr.Examples(
|
168 |
+
examples=[
|
169 |
+
["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
|
170 |
+
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
|
171 |
+
["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
|
172 |
+
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
|
173 |
+
]
|
174 |
+
,
|
175 |
+
inputs=[image,image_out,prompt],
|
176 |
+
)
|
177 |
+
gr.HTML(
|
178 |
+
gr.HTML(read_file("demo_footer.html"))
|
179 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
gr.on(
|
181 |
triggers=[btn.click, prompt.submit],
|
182 |
+
fn = process_images,
|
183 |
+
inputs = [image,prompt,strength,seed,inference_step],
|
184 |
+
outputs = [image_out]
|
185 |
)
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
+
demo.launch(share=True, show_error=True)
|