Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,103 +3,69 @@ import gradio as gr
|
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
from diffusers import FluxImg2ImgPipeline
|
10 |
-
import tempfile
|
11 |
-
import secrets
|
12 |
-
import uuid
|
13 |
-
import shutil
|
14 |
-
import ssl
|
15 |
from cryptography.fernet import Fernet
|
16 |
-
import
|
17 |
-
import
|
18 |
-
import time
|
19 |
-
import threading
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
cipher_suite = Fernet(ENCRYPTION_KEY)
|
24 |
|
25 |
-
|
26 |
-
ssl_context = ssl.create_default_context()
|
27 |
-
# Use the recommended modern approach instead of deprecated options
|
28 |
-
ssl_context.minimum_version = ssl.TLSVersion.TLSv1_2
|
29 |
-
ssl_context.set_ciphers('ECDHE+AESGCM:ECDHE+CHACHA20:DHE+AESGCM:DHE+CHACHA20')
|
30 |
-
ssl_context.check_hostname = True
|
31 |
-
ssl_context.verify_mode = ssl.CERT_REQUIRED
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
for filepath, created_time in list(self.file_registry.items()):
|
54 |
-
if current_time - created_time > self.cleanup_timeout:
|
55 |
-
try:
|
56 |
-
if os.path.exists(filepath):
|
57 |
-
# Securely delete by overwriting with random data
|
58 |
-
file_size = os.path.getsize(filepath)
|
59 |
-
with open(filepath, 'wb') as f:
|
60 |
-
f.write(os.urandom(file_size))
|
61 |
-
# Then delete
|
62 |
-
os.remove(filepath)
|
63 |
-
# Remove from registry
|
64 |
-
del self.file_registry[filepath]
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error cleaning up file {filepath}: {e}")
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Then remove the directory
|
80 |
-
try:
|
81 |
-
if os.path.exists(self.temp_dir):
|
82 |
-
shutil.rmtree(self.temp_dir)
|
83 |
-
except:
|
84 |
-
pass
|
85 |
-
|
86 |
-
# Initialize secure temp manager
|
87 |
-
secure_temp = SecureTempManager()
|
88 |
-
|
89 |
-
# Start a thread to periodically clean up old files
|
90 |
-
def cleanup_thread_function():
|
91 |
-
while True:
|
92 |
-
secure_temp.cleanup_old_files()
|
93 |
-
time.sleep(5) # Check every 5 seconds
|
94 |
-
|
95 |
-
cleanup_thread = threading.Thread(target=cleanup_thread_function)
|
96 |
-
cleanup_thread.daemon = True # Thread will exit when main program exits
|
97 |
-
cleanup_thread.start()
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def sanitize_prompt(prompt):
|
105 |
# Allow only alphanumeric characters, spaces, and basic punctuation
|
@@ -126,71 +92,21 @@ def adjust_to_multiple_of_32(width: int, height: int):
|
|
126 |
height = height - (height % 32)
|
127 |
return width, height
|
128 |
|
129 |
-
# Function to securely handle image data
|
130 |
-
def secure_image_handler(image):
|
131 |
-
"""Process image securely without exposing it to the file system"""
|
132 |
-
if image is None:
|
133 |
-
return None
|
134 |
-
|
135 |
-
# If the image is already a PIL Image, use it directly
|
136 |
-
if isinstance(image, Image.Image):
|
137 |
-
return image
|
138 |
-
|
139 |
-
# Otherwise, assume it's a file path or binary data
|
140 |
-
try:
|
141 |
-
if isinstance(image, str) and os.path.exists(image):
|
142 |
-
# It's a file path, load it securely
|
143 |
-
with open(image, 'rb') as f:
|
144 |
-
img_data = f.read()
|
145 |
-
|
146 |
-
# Immediately delete the original file if it's in our temp directory
|
147 |
-
if image.startswith(secure_temp.temp_dir):
|
148 |
-
try:
|
149 |
-
os.remove(image)
|
150 |
-
except:
|
151 |
-
pass
|
152 |
-
|
153 |
-
# Create image from binary data
|
154 |
-
return Image.open(io.BytesIO(img_data))
|
155 |
-
elif isinstance(image, bytes):
|
156 |
-
# It's binary data
|
157 |
-
return Image.open(io.BytesIO(image))
|
158 |
-
except Exception as e:
|
159 |
-
print(f"Error processing image: {e}")
|
160 |
-
return None
|
161 |
-
|
162 |
@spaces.GPU(duration=120)
|
163 |
-
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
|
164 |
progress(0, desc="Starting")
|
165 |
-
|
166 |
-
# Sanitize input
|
167 |
-
prompt = sanitize_prompt(prompt)
|
168 |
-
|
169 |
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
170 |
-
# Secure image handling
|
171 |
-
image = secure_image_handler(image)
|
172 |
-
|
173 |
if image is None:
|
174 |
-
print("
|
175 |
return None
|
176 |
-
|
177 |
generator = torch.Generator(device).manual_seed(seed)
|
178 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
179 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
180 |
image = image.resize((width, height), Image.LANCZOS)
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
prompt=prompt,
|
185 |
-
image=image,
|
186 |
-
generator=generator,
|
187 |
-
strength=strength,
|
188 |
-
width=width,
|
189 |
-
height=height,
|
190 |
-
guidance_scale=0,
|
191 |
-
num_inference_steps=num_inference_steps,
|
192 |
-
max_sequence_length=256
|
193 |
-
)
|
194 |
|
195 |
pil_image = output.images[0]
|
196 |
new_width, new_height = pil_image.size
|
@@ -200,11 +116,24 @@ def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step
|
|
200 |
return resized_image
|
201 |
return pil_image
|
202 |
|
203 |
-
# Process the image
|
204 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
205 |
|
206 |
-
#
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
def read_file(path: str) -> str:
|
210 |
with open(path, 'r', encoding='utf-8') as f:
|
@@ -236,98 +165,94 @@ css="""
|
|
236 |
.text {
|
237 |
font-size: 16px;
|
238 |
}
|
239 |
-
"""
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
"Referrer-Policy": "strict-origin-when-cross-origin",
|
248 |
-
"Permissions-Policy": "camera=(), microphone=(), geolocation=()",
|
249 |
-
"Cache-Control": "no-store, max-age=0"
|
250 |
}
|
|
|
251 |
|
252 |
-
# Create Gradio app with enhanced security
|
253 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
|
|
|
|
|
254 |
with gr.Column():
|
255 |
gr.HTML(read_file("demo_header.html"))
|
256 |
gr.HTML(read_file("demo_tools.html"))
|
257 |
with gr.Row():
|
258 |
with gr.Column():
|
259 |
-
image = gr.Image(
|
260 |
-
height=800,
|
261 |
-
sources=['upload','clipboard'],
|
262 |
-
image_mode='RGB',
|
263 |
-
elem_id="image_upload",
|
264 |
-
type="pil",
|
265 |
-
label="Upload"
|
266 |
-
)
|
267 |
with gr.Row(elem_id="prompt-container", equal_height=False):
|
268 |
with gr.Row():
|
269 |
-
prompt = gr.Textbox(
|
270 |
-
label="Prompt",
|
271 |
-
value="a women",
|
272 |
-
placeholder="Your prompt (what you want in place of what is erased)",
|
273 |
-
elem_id="prompt"
|
274 |
-
)
|
275 |
|
276 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
277 |
|
278 |
with gr.Accordion(label="Advanced Settings", open=False):
|
279 |
with gr.Row(equal_height=True):
|
280 |
-
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="
|
281 |
-
seed = gr.Number(value=100, minimum=0, step=1, label="
|
282 |
-
inference_step = gr.Number(value=4, minimum=1, step=4, label="
|
283 |
-
|
|
|
284 |
|
285 |
with gr.Column():
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
format="jpg"
|
292 |
-
)
|
293 |
|
|
|
294 |
gr.Examples(
|
295 |
examples=[
|
296 |
-
["examples/draw_input.jpg", "examples/draw_output.jpg", "a women
|
297 |
-
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a women
|
298 |
-
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a women
|
299 |
-
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a women
|
300 |
],
|
301 |
inputs=[image, image_out, prompt],
|
302 |
)
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
gr.on(
|
307 |
triggers=[btn.click, prompt.submit],
|
308 |
-
fn=
|
309 |
-
inputs=[image, prompt, strength, seed, inference_step],
|
310 |
-
outputs=[image_out]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
)
|
312 |
-
|
313 |
-
# Register shutdown handler to clean up
|
314 |
-
import atexit
|
315 |
-
atexit.register(secure_temp.cleanup_all)
|
316 |
|
317 |
if __name__ == "__main__":
|
318 |
-
|
319 |
-
demo.launch(
|
320 |
-
share=True,
|
321 |
-
show_error=True,
|
322 |
-
favicon_path=None,
|
323 |
-
server_name="0.0.0.0", # Listen on all interfaces
|
324 |
-
server_port=7860, # Default Gradio port
|
325 |
-
inbrowser=False,
|
326 |
-
debug=False, # Disable in production
|
327 |
-
quiet=True, # Less logging for security
|
328 |
-
height=900,
|
329 |
-
width=1600,
|
330 |
-
max_threads=20,
|
331 |
-
auth=None, # Enable if you need authentication
|
332 |
-
root_path=""
|
333 |
-
)
|
|
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
+
import base64
|
7 |
import os
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
from diffusers import FluxImg2ImgPipeline
|
|
|
|
|
|
|
|
|
|
|
11 |
from cryptography.fernet import Fernet
|
12 |
+
from cryptography.hazmat.primitives import hashes
|
13 |
+
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
|
|
|
|
14 |
|
15 |
+
dtype = torch.bfloat16
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
17 |
|
18 |
+
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Encryption setup
|
21 |
+
def generate_key(password, salt=None):
|
22 |
+
if salt is None:
|
23 |
+
salt = os.urandom(16)
|
24 |
+
kdf = PBKDF2HMAC(
|
25 |
+
algorithm=hashes.SHA256(),
|
26 |
+
length=32,
|
27 |
+
salt=salt,
|
28 |
+
iterations=100000,
|
29 |
+
)
|
30 |
+
key = base64.urlsafe_b64encode(kdf.derive(password.encode()))
|
31 |
+
return key, salt
|
32 |
+
|
33 |
+
def encrypt_image(image, password="default_password"):
|
34 |
+
# Convert PIL Image to bytes
|
35 |
+
img_byte_arr = io.BytesIO()
|
36 |
+
image.save(img_byte_arr, format='PNG')
|
37 |
+
img_byte_arr = img_byte_arr.getvalue()
|
38 |
|
39 |
+
# Generate key for encryption
|
40 |
+
key, salt = generate_key(password)
|
41 |
+
cipher = Fernet(key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Encrypt the image bytes
|
44 |
+
encrypted_data = cipher.encrypt(img_byte_arr)
|
45 |
+
|
46 |
+
# Return the encrypted data and salt (needed for decryption)
|
47 |
+
return {
|
48 |
+
'encrypted_data': base64.b64encode(encrypted_data).decode('utf-8'),
|
49 |
+
'salt': base64.b64encode(salt).decode('utf-8'),
|
50 |
+
'original_width': image.width,
|
51 |
+
'original_height': image.height
|
52 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
def decrypt_image(encrypted_data_dict, password="default_password"):
|
55 |
+
# Extract the encrypted data and salt
|
56 |
+
encrypted_data = base64.b64decode(encrypted_data_dict['encrypted_data'])
|
57 |
+
salt = base64.b64decode(encrypted_data_dict['salt'])
|
58 |
+
|
59 |
+
# Regenerate the key using the provided salt
|
60 |
+
key, _ = generate_key(password, salt)
|
61 |
+
cipher = Fernet(key)
|
62 |
+
|
63 |
+
# Decrypt the data
|
64 |
+
decrypted_data = cipher.decrypt(encrypted_data)
|
65 |
+
|
66 |
+
# Convert bytes back to PIL Image
|
67 |
+
image = Image.open(io.BytesIO(decrypted_data))
|
68 |
+
return image
|
69 |
|
70 |
def sanitize_prompt(prompt):
|
71 |
# Allow only alphanumeric characters, spaces, and basic punctuation
|
|
|
92 |
height = height - (height % 32)
|
93 |
return width, height
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
@spaces.GPU(duration=120)
|
96 |
+
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, encrypt_password="default_password", progress=gr.Progress(track_tqdm=True)):
|
97 |
progress(0, desc="Starting")
|
98 |
+
|
|
|
|
|
|
|
99 |
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
|
|
|
|
|
|
100 |
if image is None:
|
101 |
+
print("empty input image returned")
|
102 |
return None
|
|
|
103 |
generator = torch.Generator(device).manual_seed(seed)
|
104 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
105 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
106 |
image = image.resize((width, height), Image.LANCZOS)
|
107 |
|
108 |
+
output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height,
|
109 |
+
guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
pil_image = output.images[0]
|
112 |
new_width, new_height = pil_image.size
|
|
|
116 |
return resized_image
|
117 |
return pil_image
|
118 |
|
|
|
119 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
120 |
|
121 |
+
# Encrypt the output image
|
122 |
+
if output is not None:
|
123 |
+
encrypted_output = encrypt_image(output, encrypt_password)
|
124 |
+
|
125 |
+
# For display purposes, we'll create a placeholder image with text indicating encryption
|
126 |
+
placeholder = Image.new('RGB', (output.width, output.height), color=(220, 220, 220))
|
127 |
+
return {
|
128 |
+
"display_image": placeholder,
|
129 |
+
"encrypted_data": encrypted_output
|
130 |
+
}
|
131 |
+
return None
|
132 |
+
|
133 |
+
def save_encrypted_image(encrypted_data, filename="encrypted_image.enc"):
|
134 |
+
with open(filename, 'w') as f:
|
135 |
+
json.dump(encrypted_data, f)
|
136 |
+
return f"Encrypted image saved as {filename}"
|
137 |
|
138 |
def read_file(path: str) -> str:
|
139 |
with open(path, 'r', encoding='utf-8') as f:
|
|
|
165 |
.text {
|
166 |
font-size: 16px;
|
167 |
}
|
|
|
168 |
|
169 |
+
.encryption-notice {
|
170 |
+
background-color: #f0f0f0;
|
171 |
+
padding: 15px;
|
172 |
+
border-radius: 5px;
|
173 |
+
margin-top: 10px;
|
174 |
+
text-align: center;
|
|
|
|
|
|
|
175 |
}
|
176 |
+
"""
|
177 |
|
|
|
178 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
179 |
+
# Store encrypted data in a state variable
|
180 |
+
encrypted_output_state = gr.State(None)
|
181 |
+
|
182 |
with gr.Column():
|
183 |
gr.HTML(read_file("demo_header.html"))
|
184 |
gr.HTML(read_file("demo_tools.html"))
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
+
image = gr.Image(height=800, sources=['upload','clipboard'], image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
with gr.Row(elem_id="prompt-container", equal_height=False):
|
189 |
with gr.Row():
|
190 |
+
prompt = gr.Textbox(label="Prompt", value="a women", placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
193 |
|
194 |
with gr.Accordion(label="Advanced Settings", open=False):
|
195 |
with gr.Row(equal_height=True):
|
196 |
+
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="Strength")
|
197 |
+
seed = gr.Number(value=100, minimum=0, step=1, label="Seed")
|
198 |
+
inference_step = gr.Number(value=4, minimum=1, step=4, label="Inference Steps")
|
199 |
+
encrypt_password = gr.Textbox(label="Encryption Password", value="default_password", type="password")
|
200 |
+
id_input = gr.Text(label="Name", visible=False)
|
201 |
|
202 |
with gr.Column():
|
203 |
+
# Display placeholder image
|
204 |
+
image_out = gr.Image(height=800, sources=[], label="Output (Encrypted)", elem_id="output-img", format="jpg")
|
205 |
+
encryption_notice = gr.HTML('<div class="encryption-notice">The output image is encrypted. Use the Save button to download the encrypted file.</div>')
|
206 |
+
save_btn = gr.Button("Save Encrypted Image")
|
207 |
+
save_result = gr.Text(label="Save Result")
|
|
|
|
|
208 |
|
209 |
+
# Examples section
|
210 |
gr.Examples(
|
211 |
examples=[
|
212 |
+
["examples/draw_input.jpg", "examples/draw_output.jpg", "a women, eyes closed, mouth opened"],
|
213 |
+
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a women, eyes closed, mouth opened"],
|
214 |
+
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a women, hand on neck"],
|
215 |
+
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a women, hand on neck"]
|
216 |
],
|
217 |
inputs=[image, image_out, prompt],
|
218 |
)
|
219 |
+
|
220 |
+
gr.HTML(read_file("demo_footer.html"))
|
221 |
+
|
222 |
+
# Process images and encrypt outputs
|
223 |
+
def handle_image_generation(image, prompt, strength, seed, inference_step, encrypt_password):
|
224 |
+
result = process_images(image, prompt, strength, seed, inference_step, encrypt_password)
|
225 |
+
if result:
|
226 |
+
return result["display_image"], result["encrypted_data"]
|
227 |
+
return None, None
|
228 |
+
|
229 |
gr.on(
|
230 |
triggers=[btn.click, prompt.submit],
|
231 |
+
fn=handle_image_generation,
|
232 |
+
inputs=[image, prompt, strength, seed, inference_step, encrypt_password],
|
233 |
+
outputs=[image_out, encrypted_output_state]
|
234 |
+
)
|
235 |
+
|
236 |
+
# Save encrypted image
|
237 |
+
def handle_save_encrypted(encrypted_data):
|
238 |
+
if encrypted_data:
|
239 |
+
import json
|
240 |
+
import tempfile
|
241 |
+
import os
|
242 |
+
|
243 |
+
# Create a temporary file with the encrypted data
|
244 |
+
fd, path = tempfile.mkstemp(suffix='.encimg')
|
245 |
+
with os.fdopen(fd, 'w') as f:
|
246 |
+
json.dump(encrypted_data, f)
|
247 |
+
|
248 |
+
return f"Encrypted image saved to {path}"
|
249 |
+
return "No encrypted image to save"
|
250 |
+
|
251 |
+
save_btn.click(
|
252 |
+
fn=handle_save_encrypted,
|
253 |
+
inputs=[encrypted_output_state],
|
254 |
+
outputs=[save_result]
|
255 |
)
|
|
|
|
|
|
|
|
|
256 |
|
257 |
if __name__ == "__main__":
|
258 |
+
demo.launch(share=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|