File size: 42,607 Bytes
ea359a8 dc4cdd8 ea359a8 9746992 201b5fa 9746992 8232da4 ea359a8 563513d ea359a8 563513d ea359a8 563513d ea359a8 93f05a5 ea359a8 93f05a5 ea359a8 061cd9c ea359a8 93f05a5 ea359a8 061cd9c ea359a8 5a231a5 be97ad5 5a231a5 ea359a8 7b2c026 ea359a8 3032a78 ea359a8 3032a78 ea359a8 7b2c026 ea359a8 7b2c026 ea359a8 7ff5118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
import gradio as gr
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer
from torchvision import transforms
from models import MAGVITv2, get_mask_schedule, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from PIL import Image
import spaces
def image_transform(image, resolution=256, normalize=True):
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
if normalize:
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
return image
def add_gumbel_noise(logits, temperature):
"""
Adds Gumbel noise to logits for stochastic sampling.
Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1).
This version is more numerically stable than a version involving exp() and division.
"""
if abs(temperature) < 1e-9: # Effectively zero temperature
return logits
# Ensure logits are float64 for precision with noise, as suggested by user context
logits = logits.to(torch.float64)
# Standard Gumbel noise: -log(-log(U)), U ~ Uniform(0,1)
# Add small epsilon for numerical stability inside logs
noise = torch.rand_like(logits, dtype=torch.float64)
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
return logits + temperature * standard_gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
# Ensure steps is at least 1 to avoid division by zero if mask_num is also 0 (though sum should be >=0)
steps = max(1, int(steps)) # Ensure steps is a positive integer
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
for i in range(mask_num.size(0)): # Iterate over batch
if remainder[i] > 0 : # Ensure remainder is positive before indexing
num_transfer_tokens[i, :remainder[i].item()] += 1 # .item() for single value tensor to int
return num_transfer_tokens
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-Base" # Default
MASK_ID = 126336
MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval()
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True)
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2").to(DEVICE)
CURRENT_MODEL_PATH = None
MODEL_CHOICES = [
"MMaDA-8B-Base",
"MMaDA-8B-MixCoT (coming soon)",
"MMaDA-8B-Max (coming soon)"
]
MODEL_ACTUAL_PATHS = {
"MMaDA-8B-Base": DEFAULT_MODEL_PATH,
}
def clear_outputs_action():
return None, None
@spaces.GPU
def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status):
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting
if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load:
return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}"
CURRENT_MODEL_PATH = model_path_to_load
status_msg_parts = [f"Loading '{model_display_name_for_status}'..."]
# try:
TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True)
status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.")
MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval()
status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.")
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None:
MASK_ID = TOKENIZER.mask_token_id
status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.")
else:
MASK_ID = 126336
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
TOKENIZER.pad_token = TOKENIZER.eos_token
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).")
else:
status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.")
if TOKENIZER.eos_token_id is None: # Important for cleaning up output in visualization
status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.")
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
return " ".join(status_msg_parts)
# except Exception as e:
# MODEL = None
# TOKENIZER = None
# MASK_ID = None
# CURRENT_MODEL_PATH = None
# return f"Error loading model '{model_display_name_for_status}': {str(e)}"
def handle_model_selection_change(selected_model_name_ui):
if "coming soon" in selected_model_name_ui.lower():
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH
MODEL = None
TOKENIZER = None
MASK_ID = None
CURRENT_MODEL_PATH = None
return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'."
actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui)
if not actual_path:
return f"Path for '{selected_model_name_ui}' is not defined. Cannot load."
return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui)
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
return [("Error in sequence data for visualization.", "ERROR")]
# only answer part
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
seq_ids = current_x_ids_batch[0].tolist()
eos_token_id = tk.eos_token_id # Get EOS token ID
# Stage 1: Build initial list of tuples with (token_str, label, token_id_int)
# This helps in identifying EOS tokens later without re-checking the type.
intermediate_tuples = []
for j, token_id_int in enumerate(seq_ids):
try:
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
except Exception: # Handle cases where a token ID might be problematic (e.g. with mock)
token_str = f"[ID:{token_id_int}]"
label = "ERROR"
if token_id_int == current_mask_id:
token_str = "[MASK]"
label = "MASK"
else:
label = "GEN"
intermediate_tuples.append((token_str, label, token_id_int))
return intermediate_tuples
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
guidance_scale = float(guidance_scale)
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID
prompt_text = [prompt_text]
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen')
if guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen')
else:
uncond_input_ids, uncond_attention_mask = None, None
mask_schedule = get_mask_schedule(mask_schedule)
blank_image = Image.new("RGB", (512, 512), (255, 255, 255))
yield blank_image, "Starting generation..."
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise(
input_ids = input_ids,
uncond_input_ids = uncond_input_ids,
attention_mask = attention_mask,
uncond_attention_mask = uncond_attention_mask,
temperature=1.0,
timesteps = steps,
guidance_scale = guidance_scale,
noise_schedule = mask_schedule,
noise_type = "mask",
seq_len = 1024,
vq_model = VQ_MODEL,
uni_prompting=uni_prompting):
yield image_step, status_msg_step
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_lm=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
gen_length = int(gen_length)
block_length = int(block_length)
if thinking_mode_lm:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
try:
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
except Exception as e:
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
processed_prompt_text = prompt_text
try:
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
else: # Should have been caught by load_model, but double check
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
return
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = None
except Exception as e:
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
return
batch_size = input_ids.shape[0]
prompt_len = input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
if gen_length == 0:
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
return
if block_length <= 0 or gen_length % block_length != 0 :
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
return
num_blocks = gen_length // block_length
if steps <=0 or steps % num_blocks != 0:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
return
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
steps_per_block
)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
if cfg_scale > 0.:
un_x = x.clone()
# For unconditional pass, mask out the original prompt tokens that are not padding
# raw_prompt_attention_mask is (B, prompt_len)
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
x_cfg_input = torch.cat([x, un_x], dim=0)
# Pass attention_mask for CFG if model expects it, covering both parts
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x_cfg_input)
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
else:
# Not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
if remasking_strategy == 'low_confidence':
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
elif remasking_strategy == 'random':
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
else:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
return
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
confidence_for_selection = torch.where(
candidate_positions_for_unmasking,
x0_probs,
-torch.inf
)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
if k_val > 0:
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
conf_slice = confidence_for_selection[j_batch_idx]
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
# Check if there are enough valid (non -inf) confidences
valid_conf_count = (conf_slice > -torch.inf).sum().item()
actual_k = min(k_val, valid_conf_count)
if actual_k > 0:
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
total_overall_steps = num_blocks * steps_per_block
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_generated_ids = x[:, prompt_len:]
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_mmu=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
gen_length = int(gen_length)
block_length = int(block_length)
if thinking_mode_mmu:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
try:
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
except Exception as e:
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
processed_prompt_text = prompt_text
image_vq_ids_tensor = None
if uploaded_image_pil is not None:
try:
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE)
image = image.unsqueeze(0)
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349
except Exception as e:
yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}"
return
try:
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
else:
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
return
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = None
if image_vq_ids_tensor is not None:
if image_vq_ids_tensor.ndim == 1:
image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE),
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE),
image_vq_ids_tensor,
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE),
input_ids
], dim=1).long()
else:
input_ids = input_ids
except Exception as e:
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
return
batch_size = input_ids.shape[0]
prompt_len = input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
if gen_length == 0:
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
return
if block_length <= 0 or gen_length % block_length != 0 :
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
return
num_blocks = gen_length // block_length
if steps <=0 or steps % num_blocks != 0:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
return
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
steps_per_block
)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
if cfg_scale > 0.:
un_x = x.clone()
# For unconditional pass, mask out the original prompt tokens that are not padding
# raw_prompt_attention_mask is (B, prompt_len)
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
x_cfg_input = torch.cat([x, un_x], dim=0)
# Pass attention_mask for CFG if model expects it, covering both parts
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x_cfg_input)
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
else:
# Not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
if remasking_strategy == 'low_confidence':
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
elif remasking_strategy == 'random':
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
else:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
return
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
confidence_for_selection = torch.where(
candidate_positions_for_unmasking,
x0_probs,
-torch.inf
)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
if k_val > 0:
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
conf_slice = confidence_for_selection[j_batch_idx]
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
# Check if there are enough valid (non -inf) confidences
valid_conf_count = (conf_slice > -torch.inf).sum().item()
actual_k = min(k_val, valid_conf_count)
if actual_k > 0:
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
total_overall_steps = num_blocks * steps_per_block
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_generated_ids = x[:, prompt_len:]
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
css_styles = """
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
.highlighted-text span{
padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;
}
footer{display:none !important}
#live-update-scrollable-box {
max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */
overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */
display: block; /* 确保元素是块级元素,以便 max-height 生效 */
}
#think_btn {
background-color: #f3f4f6 !important;
border: 1px solid #d0d0d0 !important;
color: #111827 !important;
font-size: 16px !important;
font-weight: bold !important;
}
#think_btn:hover {
background-color: #e0e0e0 !important;
border: 1px solid #c0c0c0 !important;
color: #222 !important;
}
#think_btn:active {
background-color: #2563eb !important;
border: 1px solid #b0b0b0 !important;
color: white !important;
}
"""
# thinking_mode_t2i = gr.State(False)
def toggle_thinking_mode_lm(current_thinking_mode):
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
def toggle_thinking_mode_mmu(current_thinking_mode):
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
color_map_config = {
"MASK": "lightgrey",
"GEN": "#DCABFA",
}
theme = gr.themes.Ocean(
primary_hue="fuchsia",
)
with gr.Blocks(css=css_styles, theme=theme) as demo:
# with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
# with gr.Blocks() as demo:
thinking_mode_lm = gr.State(False)
thinking_mode_mmu = gr.State(False)
# gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>MMaDA: Multimodal Large Diffusion Language Models</h1>")
# gr.Markdown("MMaDA is a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation")
# gr.Markdown("Github: [Gen-Verse/MMaDA](https://github.com/Gen-Verse/MMaDA)")
# gr.Markdown("Paper: [MMaDA: Multimodal Large Diffusion Language Models]()")
gr.HTML("""
<div align="center" style="margin-bottom: 20px;">
<img src='/gradio_api/file=title.png' width="160">
<p style="font-size: 16px; max-width: 800px; margin: 5px auto;">
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.
</p>
<p style="font-size: 15px;">
📄 <a href="https://arxiv.org/abs/2505.15809" target="_blank">Paper</a>
|
💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a>
</p>
</div>
""")
with gr.Row():
model_select_radio = gr.Radio(
label="Select Text Generation Model",
choices=MODEL_CHOICES,
value=MODEL_CHOICES[0]
)
model_load_status_box = gr.Textbox(
label="Model Load Status",
interactive=False,
lines=3,
max_lines=5
)
gr.Markdown("## Part 1. Text Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
think_button_lm = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
with gr.Row():
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
with gr.Row():
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
# gr.Markdown("## Live Generation Process")
output_visualization_box_lm = gr.HighlightedText(
label="Live Generation Process",
show_legend=True,
color_map=color_map_config,
combine_adjacent=False,
interactive=False,
elem_id="live-update-scrollable-box",
)
# gr.Markdown("## Final Generated Text")
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
gr.Examples(
examples=[
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm],
outputs=[output_visualization_box_lm, output_final_text_box_lm],
fn=generate_viz_wrapper_lm,
cache_examples=False
)
gr.Markdown("---")
gr.Markdown("## Part 2. Multimodal Understanding")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_mmu = gr.Textbox(
label="Enter your prompt:",
lines=3,
value="Please describe this image in detail."
)
think_button_mmu = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
with gr.Row():
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
with gr.Row():
image_upload_box = gr.Image(type="pil", label="Upload Image")
with gr.Row():
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
gr.Markdown("## Live Generation Process")
output_visualization_box_mmu = gr.HighlightedText(
label="Token Sequence (Live Update)",
show_legend=True,
color_map=color_map_config,
combine_adjacent=False,
interactive=False,
elem_id="live-update-scrollable-box",
)
gr.Markdown("## Final Generated Text")
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
gr.Examples(
examples=[
[
"figs/sunflower.jpg",
"Please describe this image in detail.",
256,
512,
128,
1,
0,
"low_confidence"
],
[
"figs/woman.jpg",
"Please describe this image in detail.",
256,
512,
128,
1,
0,
"low_confidence"
]
],
inputs=[
image_upload_box,
prompt_input_box_mmu,
steps_slider_mmu,
gen_length_slider_mmu,
block_length_slider_mmu,
temperature_slider_mmu,
cfg_scale_slider_mmu,
remasking_dropdown_mmu
],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
fn=generate_viz_wrapper,
cache_examples=False
)
gr.Markdown("---")
gr.Markdown("## Part 3. Text-to-Image Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.")
with gr.Row():
scheduler_radio_t2i = gr.Radio(
choices=["cosine", "sigmoid", "linear"],
value="cosine",
label="Scheduler",
)
with gr.Row():
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
# gr.Markdown("## Live Generation Process")
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
gr.Examples(
examples=[
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"]
],
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i],
outputs=[output_image_t2i, output_status_t2i],
fn=generate_viz_wrapper_t2i,
cache_examples=False
)
run_button_ui_t2i.click(
fn=generate_viz_wrapper_t2i,
inputs=[
prompt_input_box_t2i,
steps_slider_t2i,
guidance_scale_slider_t2i,
scheduler_radio_t2i
],
outputs=[output_image_t2i, output_status_t2i]
)
clear_button_ui_t2i.click(
fn=lambda: (None, ""),
inputs=None,
outputs=[output_image_t2i, output_status_t2i],
queue=False
)
think_button_lm.click(
fn=toggle_thinking_mode_lm,
inputs=[thinking_mode_lm],
outputs=[thinking_mode_lm, think_button_lm]
)
think_button_mmu.click(
fn=toggle_thinking_mode_mmu,
inputs=[thinking_mode_mmu],
outputs=[thinking_mode_mmu, think_button_mmu]
)
def initialize_default_model():
default_model = "MMaDA-8B-Base"
result = handle_model_selection_change(default_model)
return default_model, result
demo.load(
fn=initialize_default_model,
inputs=None,
outputs=[model_select_radio, model_load_status_box],
queue=True
)
def clear_outputs():
return None, None, None # Clear image, visualization, and final text
clear_button_ui_lm.click(
fn=clear_outputs,
inputs=None,
outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm],
queue=False
)
clear_button_ui_mmu.click(
fn=clear_outputs,
inputs=None,
outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu],
queue=False
)
run_button_ui_lm.click(
fn=generate_viz_wrapper_lm,
inputs=[
prompt_input_box_lm,
steps_slider_lm,
gen_length_slider_lm,
block_length_slider_lm,
temperature_slider_lm,
cfg_scale_slider_lm,
remasking_dropdown_lm,
thinking_mode_lm
],
outputs=[output_visualization_box_lm, output_final_text_box_lm]
)
run_button_ui_mmu.click(
fn=generate_viz_wrapper,
inputs=[
image_upload_box,
prompt_input_box_mmu,
steps_slider_mmu,
gen_length_slider_mmu,
block_length_slider_mmu,
temperature_slider_mmu,
cfg_scale_slider_mmu,
remasking_dropdown_mmu,
thinking_mode_mmu
],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu]
)
if __name__ == "__main__":
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
demo.launch(allowed_paths=["title.png"]) |