File size: 32,764 Bytes
ea359a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
from __future__ import annotations
import logging
import math
import sys
from abc import abstractmethod
from collections import defaultdict
from functools import partial
from typing import (
Callable,
Dict,
Iterable,
List,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
cast,
)
from dataclasses import fields
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.auto import AutoModel, AutoConfig, AutoModelForCausalLM
from transformers.cache_utils import Cache
from PIL import Image
from .configuration_llada import (
LLaDAConfig,
StrEnum,
InitFnType,
ActivationType,
BlockType,
LayerNormType,
ModelConfig,
ActivationCheckpointingStrategy,
)
from .modeling_llada import LLaDAModelLM
from .sampling import cosine_schedule, mask_by_random_topk
from transformers import PretrainedConfig
def add_gumbel_noise(logits, temperature):
'''
The Gumbel max is a method for sampling categorical distributions.
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
Thus, we use float64.
'''
if temperature == 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
'''
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
the expected number of tokens transitioned at each step should be consistent.
This function is designed to precompute the number of tokens that need to be transitioned at each step.
'''
mask_num = mask_index.sum(dim=1, keepdim=True)
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
class MMadaConfig(PretrainedConfig):
model_type = "mmada"
def __init__(self, **kwargs):
super().__init__(**kwargs)
allowed_keys = [
"vocab_size",
"llm_vocab_size",
"llm_model_path",
"codebook_size",
"num_vq_tokens",
"num_new_special_tokens",
"gradient_checkpointing",
"new_vocab_size",
]
for key in allowed_keys:
if key in kwargs:
setattr(self, key, kwargs[key])
class MMadaModelLM(LLaDAModelLM):
config_class = MMadaConfig
base_model_prefix = "model"
def __init__(self, config: MMadaConfig, *args, **kwargs):
print(f"Initializing MMadaModelLM with config: {config}")
super().__init__(config, *args, **kwargs)
# # resize token embeddings
# print(f"Resizing token embeddings to {config.new_vocab_size}")
# self.resize_token_embeddings(config.new_vocab_size)
@torch.no_grad()
def t2i_generate(
self,
input_ids: torch.LongTensor = None,
uncond_input_ids: torch.LongTensor = None,
attention_mask=None,
uncond_attention_mask=None,
temperature=1.0,
timesteps=18, # ideal number of steps is 18 in maskgit paper
guidance_scale=0,
noise_schedule=cosine_schedule,
generator: torch.Generator = None,
config=None,
seq_len=1024,
mask_token_id = 126336,
resolution = 512,
codebook_size = 8192,
**kwargs,
):
"""
Generate 1:1 similar to the original MaskGit repo
https://github.com/google-research/maskgit/blob/main/maskgit/libml/parallel_decode.py#L79
"""
# begin with all image token ids masked
# 计算有多少个mask token
mask_count = (input_ids == mask_token_id).sum().item()
num_vq_tokens = seq_len
num_new_special_tokens = 0
uni_prompting = kwargs.get("uni_prompting", None)
# print(f"config.model.mmada.llm_vocab_size: {config.model.mmada.llm_vocab_size}, {len(uni_prompting.text_tokenizer)}")
input_ids_minus_lm_vocab_size = input_ids[:, -(num_vq_tokens + 1):-1].clone()
input_ids_minus_lm_vocab_size = torch.where(input_ids_minus_lm_vocab_size == mask_token_id, mask_token_id, input_ids_minus_lm_vocab_size - len(uni_prompting.text_tokenizer) - num_new_special_tokens)
# for classifier-free guidance
if uncond_input_ids is not None:
uncond_prefix = uncond_input_ids[:, :resolution + 1]
for step in range(timesteps):
if uncond_input_ids is not None and guidance_scale > 0:
uncond_input_ids = torch.cat(
[uncond_prefix, input_ids[:, resolution + 1:]], dim=1)
model_input = torch.cat([input_ids, uncond_input_ids])
attention_mask = torch.cat([attention_mask, uncond_attention_mask], dim=0)
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(model_input, attention_bias=attention_bias).logits
# print(f"logits.shape: {logits.shape}")
cond_logits, uncond_logits = torch.chunk(logits, 2, dim=0)
# logits = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
# it seems that muse has a different cfg setting
logits = (1 + guidance_scale) * cond_logits - guidance_scale * uncond_logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
else:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(input_ids, attention_bias=attention_bias).logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
# logits: 1, 1024, 8192
# print(f"logits.shape: {logits.shape}")
probs = logits.softmax(dim=-1)
sampled = probs.reshape(-1, logits.size(-1))
# print(f"probs: {probs}, probs.shape: {probs.shape}, sampled: {sampled}, sampled.shape: {sampled.shape}")
sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*logits.shape[:-1]) # 1, 1024
unknown_map = input_ids_minus_lm_vocab_size == mask_token_id
# print(f"unknown_map.sum(dim=-1, keepdim=True): {unknown_map.sum(dim=-1, keepdim=True)}")
sampled_ids = torch.where(unknown_map, sampled_ids, input_ids_minus_lm_vocab_size)
# Defines the mask ratio for the next round. The number to mask out is
# determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1.0 * (step + 1) / timesteps
mask_ratio = noise_schedule(torch.tensor(ratio))
# Computes the probabilities of each selected tokens.
selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None])
selected_probs = selected_probs.squeeze(-1)
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
# Gets mask lens for each sample in the batch according to the mask ratio.
mask_len = (num_vq_tokens * mask_ratio).floor().unsqueeze(0).to(logits.device)
# Keeps at least one of prediction in this round and also masks out at least
# one and for the next iteration
mask_len = torch.max(
torch.tensor([1], device=logits.device), torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
)
# print(f"mask_len: {mask_len}, mask_len.shape: {mask_len.shape}")
# Adds noise for randomness
temperature = temperature * (1.0 - ratio)
masking = mask_by_random_topk(mask_len, selected_probs, temperature, generator=generator)
# Masks tokens with lower confidence.
input_ids[:, -(num_vq_tokens + 1):-1] = torch.where(masking, mask_token_id,
sampled_ids + len(uni_prompting.text_tokenizer)
+ num_new_special_tokens)
input_ids_minus_lm_vocab_size = torch.where(masking, mask_token_id, sampled_ids)
return sampled_ids
def forward_process(
self,
input_ids,
labels,
batch_size_t2i=0,
batch_size_lm=0,
batch_size_mmu=0,
max_seq_length=128,
p_mask_lm=None,
p_mask_mmu=None,
answer_lengths=None,
t2i_masks=None,
answer_lengths_lm=None
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
if batch_size_t2i == 0:
loss_t2i = torch.tensor(0.0, device=input_ids.device)
else:
# t2i loss
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
# llada loss
masked_indices = input_ids == self.config.mask_token_id
masked_indices_lm = masked_indices[batch_size_t2i:batch_size_t2i + batch_size_lm]
# 新增调试代码:统计每行mask数量
# if masked_indices_lm.numel() > 0:
# mask_counts = torch.sum(masked_indices_lm, dim=1)
# logging.info(f"[LM mask nums]: {mask_counts.cpu()}.")
# else:
# logging.info("[LM mask nums] no LM sample.")
masked_indices_mmu = masked_indices[-batch_size_mmu:]
p_mask_lm = p_mask_lm.to(masked_indices_lm.device)
p_mask_mmu = p_mask_mmu.to(masked_indices_mmu.device)
answer_lengths = answer_lengths.to(masked_indices_mmu.device)
loss_lm = F.cross_entropy(
logits[batch_size_t2i:batch_size_t2i + batch_size_lm][masked_indices_lm].contiguous().view(-1, self.output_size),
labels[batch_size_t2i:batch_size_t2i + batch_size_lm][masked_indices_lm].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_lm[masked_indices_lm]
# print(f"logits lm shape: {logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape}")
loss_lm = loss_lm.sum() / (logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[0] * logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[1])
# llm loss
answer_lengths_lm = answer_lengths_lm.to(masked_indices_lm.device)
loss_lm = torch.sum(loss_lm / answer_lengths_lm[masked_indices_lm]) / (logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[0])
loss_mmu = F.cross_entropy(
logits[-batch_size_mmu:][masked_indices_mmu].contiguous().view(-1, self.output_size),
labels[-batch_size_mmu:][masked_indices_mmu].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_mmu[masked_indices_mmu]
loss_mmu = torch.sum(loss_mmu/answer_lengths[masked_indices_mmu]) / (logits[-batch_size_mmu:].shape[0])
return logits, loss_t2i, loss_lm, loss_mmu
def forward_process_with_r2i(
self,
input_ids,
labels,
t2i_masks=None,
max_seq_length=128,
batch_size_t2i=0,
batch_size_lm=0,
batch_size_mmu=0,
batch_size_r2i=0,
p_mask_lm=None,
p_mask_mmu=None,
p_mask_r2i=None,
answer_lengths=None,
answer_lengths_lm=None,
answer_lengths_r2i=None,
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
if batch_size_t2i == 0:
loss_t2i = torch.tensor(0.0, device=input_ids.device)
else:
# t2i loss
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
# llada loss
start_lm = batch_size_t2i
end_lm = start_lm + batch_size_lm
start_mmu = end_lm
end_mmu = start_mmu + batch_size_mmu
start_r2i = end_mmu
end_r2i = start_r2i + batch_size_r2i
masked_indices = input_ids == self.config.mask_token_id
masked_indices_lm = masked_indices[start_lm:end_lm]
masked_indices_mmu = masked_indices[start_mmu:end_mmu]
masked_indices_r2i = masked_indices[start_r2i:end_r2i]
p_mask_lm = p_mask_lm.to(masked_indices_lm.device)
p_mask_mmu = p_mask_mmu.to(masked_indices_mmu.device)
p_mask_r2i = p_mask_r2i.to(masked_indices_r2i.device)
answer_lengths = answer_lengths.to(masked_indices_mmu.device)
answer_lengths_lm = answer_lengths_lm.to(masked_indices_lm.device)
answer_lengths_r2i = answer_lengths_r2i.to(masked_indices_r2i.device)
loss_lm = F.cross_entropy(
logits[start_lm:end_lm][masked_indices_lm].contiguous().view(-1, self.output_size),
labels[start_lm:end_lm][masked_indices_lm].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_lm[masked_indices_lm]
# print(f"logits lm shape: {logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape}")
loss_lm = loss_lm.sum() / (logits[start_lm:end_lm].shape[0] * logits[start_lm:end_lm].shape[1])
loss_lm = torch.sum(loss_lm / answer_lengths_lm[masked_indices_lm]) / (logits[start_lm:end_lm].shape[0])
loss_mmu = F.cross_entropy(
logits[start_mmu:end_mmu][masked_indices_mmu].contiguous().view(-1, self.output_size),
labels[start_mmu:end_mmu][masked_indices_mmu].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_mmu[masked_indices_mmu]
loss_mmu = torch.sum(loss_mmu/answer_lengths[masked_indices_mmu]) / (logits[start_mmu:end_mmu].shape[0])
loss_r2i = F.cross_entropy(
logits[start_r2i:end_r2i][masked_indices_r2i].contiguous().view(-1, self.output_size),
labels[start_r2i:end_r2i][masked_indices_r2i].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_r2i[masked_indices_r2i]
loss_r2i = torch.sum(loss_r2i/answer_lengths_r2i[masked_indices_r2i]) / (logits[start_r2i:end_r2i].shape[0])
return logits, loss_t2i, loss_lm, loss_mmu, loss_r2i
def forward_t2i(
self,
input_ids,
labels,
batch_size_t2i=0,
max_seq_length=128,
t2i_masks=None
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
return loss_t2i
@torch.no_grad()
def mmu_generate(self, idx=None, input_embeddings=None, max_new_tokens=128, steps=128,block_length=128, temperature=0.0, top_k=None, eot_token=None, cfg_scale=0.0, remasking='low_confidence', mask_id=126336, attention_mask=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
if attention_mask is not None and 0.0 in attention_mask:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
# print(f"attention_bias: {attention_bias}")
else:
attention_bias = None
try:
device = idx.device
except:
device = input_embeddings.device
result = []
batch_size = idx.shape[0]
x = torch.full((batch_size, idx.shape[1] + max_new_tokens), mask_id, dtype=torch.long).to(self.device)
x[:, :idx.shape[1]] = idx.clone()
prompt_index = (x != mask_id)
assert max_new_tokens % block_length == 0
num_blocks = max_new_tokens // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
# print(f"num_blocks: {num_blocks}, steps: {steps}")
# num_transfer_tokens = get_num_transfer_tokens(prompt_index, steps)
for num_block in range(num_blocks):
block_mask_index = (x[:, idx.shape[1] + num_block * block_length: idx.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
# num_transfer_tokens = get_num_transfer_tokens(prompt_index, steps)
# print(f"num_transfer_tokens: {num_transfer_tokens}, num_transfer_tokens.shape: {num_transfer_tokens.shape}")
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.0:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = self(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = self(x, attention_bias=attention_bias).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, idx.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
# logits = logits[:, -1, :] / temperature
# # optionally crop the logits to only the top k options
# if top_k is not None:
# v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
# logits[logits < v[:, [-1]]] = -float('Inf')
# # apply softmax to convert logits to (normalized) probabilities
# probs = F.softmax(logits, dim=-1)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1)
# result.append(idx_next[0][0])
# # append sampled index to the running sequence and continue
# if self.config.w_clip_vit:
# idx_next_embeddings = self.mmada.model.embed_tokens(idx_next)
# input_embeddings = torch.cat([input_embeddings, idx_next_embeddings], dim=1)
# else:
# idx = torch.cat((idx, idx_next), dim=1)
# if eot_token is not None and idx_next.cpu() == eot_token:
# break
return x
@torch.no_grad()
def mmu_generate_fast(self, idx=None, input_embeddings=None, max_new_tokens=128, steps=128,block_length=128, temperature=0.0, top_k=None, eot_token=None, cfg_scale=0.0, remasking='low_confidence', mask_id=126336, attention_mask=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
if attention_mask is not None and 0.0 in attention_mask:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
# print(f"attention_bias: {attention_bias}")
else:
attention_bias = None
try:
device = idx.device
except:
device = input_embeddings.device
result = []
batch_size = idx.shape[0]
x = torch.full((batch_size, idx.shape[1] + max_new_tokens), mask_id, dtype=torch.long).to(self.device)
x[:, :idx.shape[1]] = idx.clone()
prompt_index = (x != mask_id)
assert max_new_tokens % block_length == 0
num_blocks = max_new_tokens // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, idx.shape[1] + num_block * block_length: idx.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.0:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = self(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = self(x, attention_bias=attention_bias).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, idx.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
if eot_token is not None:
last_token_index_in_current_block = idx.shape[1] + (num_block + 1) * block_length - 1
if last_token_index_in_current_block < x.shape[1]:
tokens_at_block_end = x[:, last_token_index_in_current_block]
if torch.all(tokens_at_block_end == eot_token):
break
return x
@torch.no_grad()
def t2i_generate_decoding_stepwise(
self,
input_ids: torch.LongTensor = None,
uncond_input_ids: torch.LongTensor = None,
attention_mask=None,
uncond_attention_mask=None,
temperature=1.0,
timesteps=18, # ideal number of steps is 18 in maskgit paper
guidance_scale=0,
noise_schedule=cosine_schedule,
generator: torch.Generator = None,
config=None,
seq_len=1024,
mask_token_id = 126336,
resolution = 512,
codebook_size = 8192,
vq_model = None,
**kwargs,
):
"""
Generate 1:1 similar to the original MaskGit repo
https://github.com/google-research/maskgit/blob/main/maskgit/libml/parallel_decode.py#L79
"""
# begin with all image token ids masked
# 计算有多少个mask token
mask_count = (input_ids == mask_token_id).sum().item()
num_vq_tokens = seq_len
num_new_special_tokens = 0
uni_prompting = kwargs.get("uni_prompting", None)
# print(f"config.model.mmada.llm_vocab_size: {config.model.mmada.llm_vocab_size}, {len(uni_prompting.text_tokenizer)}")
input_ids_minus_lm_vocab_size = input_ids[:, -(num_vq_tokens + 1):-1].clone()
input_ids_minus_lm_vocab_size = torch.where(input_ids_minus_lm_vocab_size == mask_token_id, mask_token_id, input_ids_minus_lm_vocab_size - len(uni_prompting.text_tokenizer) - num_new_special_tokens)
# for classifier-free guidance
if uncond_input_ids is not None:
uncond_prefix = uncond_input_ids[:, :resolution + 1]
for step in range(timesteps):
if uncond_input_ids is not None and guidance_scale > 0:
uncond_input_ids = torch.cat(
[uncond_prefix, input_ids[:, resolution + 1:]], dim=1)
model_input = torch.cat([input_ids, uncond_input_ids])
attention_mask = torch.cat([attention_mask, uncond_attention_mask], dim=0)
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(model_input, attention_bias=attention_bias).logits
# print(f"logits.shape: {logits.shape}")
cond_logits, uncond_logits = torch.chunk(logits, 2, dim=0)
# logits = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
# it seems that muse has a different cfg setting
logits = (1 + guidance_scale) * cond_logits - guidance_scale * uncond_logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
else:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(input_ids, attention_bias=attention_bias).logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
# logits: 1, 1024, 8192
# print(f"logits.shape: {logits.shape}")
probs = logits.softmax(dim=-1)
sampled = probs.reshape(-1, logits.size(-1))
# print(f"probs: {probs}, probs.shape: {probs.shape}, sampled: {sampled}, sampled.shape: {sampled.shape}")
sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*logits.shape[:-1]) # 1, 1024
unknown_map = input_ids_minus_lm_vocab_size == mask_token_id
# print(f"unknown_map.sum(dim=-1, keepdim=True): {unknown_map.sum(dim=-1, keepdim=True)}")
sampled_ids = torch.where(unknown_map, sampled_ids, input_ids_minus_lm_vocab_size)
# Defines the mask ratio for the next round. The number to mask out is
current_image_vq_indices = sampled_ids.clone()
# print(f"current_image_vq_indices: {current_image_vq_indices}")
current_image_vq_indices = torch.clamp(current_image_vq_indices, 0, 8192 - 1)
current_image = vq_model.decode_code(current_image_vq_indices)
images = torch.clamp((current_image + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = Image.fromarray(images[0])
yield pil_images, f"Step {step + 1}/{timesteps}"
# determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1.0 * (step + 1) / timesteps
mask_ratio = noise_schedule(torch.tensor(ratio))
# Computes the probabilities of each selected tokens.
selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None])
selected_probs = selected_probs.squeeze(-1)
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
# Gets mask lens for each sample in the batch according to the mask ratio.
mask_len = (num_vq_tokens * mask_ratio).floor().unsqueeze(0).to(logits.device)
# Keeps at least one of prediction in this round and also masks out at least
# one and for the next iteration
mask_len = torch.max(
torch.tensor([1], device=logits.device), torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
)
# print(f"mask_len: {mask_len}, mask_len.shape: {mask_len.shape}")
# Adds noise for randomness
temperature = temperature * (1.0 - ratio)
masking = mask_by_random_topk(mask_len, selected_probs, temperature, generator=generator)
# Masks tokens with lower confidence.
input_ids[:, -(num_vq_tokens + 1):-1] = torch.where(masking, mask_token_id,
sampled_ids + len(uni_prompting.text_tokenizer)
+ num_new_special_tokens)
input_ids_minus_lm_vocab_size = torch.where(masking, mask_token_id, sampled_ids)
return sampled_ids
AutoConfig.register("mmada", MMadaConfig)
AutoModelForCausalLM.register(MMadaConfig, MMadaModelLM)
AutoModel.register(MMadaConfig, MMadaModelLM)
|