MMaDA / app.py
tyfeld
initial
ea359a8
raw
history blame
41.5 kB
import gradio as gr
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer
from torchvision import transforms
from models import MAGVITv2, get_mask_schedule, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from PIL import Image
def image_transform(image, resolution=256, normalize=True):
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
if normalize:
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
return image
def add_gumbel_noise(logits, temperature):
"""
Adds Gumbel noise to logits for stochastic sampling.
Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1).
This version is more numerically stable than a version involving exp() and division.
"""
if abs(temperature) < 1e-9: # Effectively zero temperature
return logits
# Ensure logits are float64 for precision with noise, as suggested by user context
logits = logits.to(torch.float64)
# Standard Gumbel noise: -log(-log(U)), U ~ Uniform(0,1)
# Add small epsilon for numerical stability inside logs
noise = torch.rand_like(logits, dtype=torch.float64)
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
return logits + temperature * standard_gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
# Ensure steps is at least 1 to avoid division by zero if mask_num is also 0 (though sum should be >=0)
steps = max(1, int(steps)) # Ensure steps is a positive integer
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
for i in range(mask_num.size(0)): # Iterate over batch
if remainder[i] > 0 : # Ensure remainder is positive before indexing
num_transfer_tokens[i, :remainder[i].item()] += 1 # .item() for single value tensor to int
return num_transfer_tokens
MODEL = None
TOKENIZER = None
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
MASK_ID = None
uni_prompting = None
VQ_MODEL = MAGVITv2().from_pretrained("/data_storage/shared/pretrained_models/models--showlab--magvitv2").to(DEVICE)
DEFAULT_MODEL_PATH = "/data_storage/lbw/MMaDA/mmada-training-stage3-llada-instruct-512-cot-uni/checkpoint-210000/unwrapped_model" # Default
CURRENT_MODEL_PATH = None
MODEL_CHOICES = [
"MMaDA-8B-Base",
"MMaDA-8B-MixCoT (coming soon)",
"MMaDA-8B-Max (coming soon)"
]
MODEL_ACTUAL_PATHS = {
"MMaDA-8B-Base": DEFAULT_MODEL_PATH,
}
def clear_outputs_action():
return None, None
def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status):
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting
if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load:
return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}"
CURRENT_MODEL_PATH = model_path_to_load
status_msg_parts = [f"Loading '{model_display_name_for_status}'..."]
try:
TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True)
status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.")
MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval()
status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.")
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None:
MASK_ID = TOKENIZER.mask_token_id
status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.")
else:
MASK_ID = 126336
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
TOKENIZER.pad_token = TOKENIZER.eos_token
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).")
else:
status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.")
if TOKENIZER.eos_token_id is None: # Important for cleaning up output in visualization
status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.")
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
return " ".join(status_msg_parts)
except Exception as e:
MODEL = None
TOKENIZER = None
MASK_ID = None
CURRENT_MODEL_PATH = None
return f"Error loading model '{model_display_name_for_status}': {str(e)}"
def handle_model_selection_change(selected_model_name_ui):
if "coming soon" in selected_model_name_ui.lower():
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH
MODEL = None
TOKENIZER = None
MASK_ID = None
CURRENT_MODEL_PATH = None
return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'."
actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui)
if not actual_path:
return f"Path for '{selected_model_name_ui}' is not defined. Cannot load."
return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui)
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
return [("Error in sequence data for visualization.", "ERROR")]
# only answer part
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
seq_ids = current_x_ids_batch[0].tolist()
eos_token_id = tk.eos_token_id # Get EOS token ID
# Stage 1: Build initial list of tuples with (token_str, label, token_id_int)
# This helps in identifying EOS tokens later without re-checking the type.
intermediate_tuples = []
for j, token_id_int in enumerate(seq_ids):
try:
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
except Exception: # Handle cases where a token ID might be problematic (e.g. with mock)
token_str = f"[ID:{token_id_int}]"
label = "ERROR"
if token_id_int == current_mask_id:
token_str = "[MASK]"
label = "MASK"
else:
label = "GEN"
intermediate_tuples.append((token_str, label, token_id_int))
return intermediate_tuples
@torch.no_grad()
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
guidance_scale = float(guidance_scale)
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID
prompt_text = [prompt_text]
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen')
if guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen')
else:
uncond_input_ids, uncond_attention_mask = None, None
mask_schedule = get_mask_schedule(mask_schedule)
blank_image = Image.new("RGB", (512, 512), (255, 255, 255))
yield blank_image, "Starting generation..."
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise(
input_ids = input_ids,
uncond_input_ids = uncond_input_ids,
attention_mask = attention_mask,
uncond_attention_mask = uncond_attention_mask,
temperature=1.0,
timesteps = steps,
guidance_scale = guidance_scale,
noise_schedule = mask_schedule,
noise_type = "mask",
seq_len = 1024,
vq_model = VQ_MODEL,
uni_prompting=uni_prompting):
yield image_step, status_msg_step
@torch.no_grad()
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_lm):
global MODEL, TOKENIZER, MASK_ID, DEVICE
print(f"thinking_mode_lm: {thinking_mode_lm}")
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
gen_length = int(gen_length)
block_length = int(block_length)
if thinking_mode_lm:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
try:
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
except Exception as e:
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
processed_prompt_text = prompt_text
try:
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
else: # Should have been caught by load_model, but double check
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
return
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = None
except Exception as e:
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
return
batch_size = input_ids.shape[0]
prompt_len = input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
if gen_length == 0:
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
return
if block_length <= 0 or gen_length % block_length != 0 :
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
return
num_blocks = gen_length // block_length
if steps <=0 or steps % num_blocks != 0:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
return
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
steps_per_block
)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
if cfg_scale > 0.:
un_x = x.clone()
# For unconditional pass, mask out the original prompt tokens that are not padding
# raw_prompt_attention_mask is (B, prompt_len)
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
x_cfg_input = torch.cat([x, un_x], dim=0)
# Pass attention_mask for CFG if model expects it, covering both parts
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x_cfg_input)
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
else:
# Not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
if remasking_strategy == 'low_confidence':
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
elif remasking_strategy == 'random':
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
else:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
return
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
confidence_for_selection = torch.where(
candidate_positions_for_unmasking,
x0_probs,
-torch.inf
)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
if k_val > 0:
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
conf_slice = confidence_for_selection[j_batch_idx]
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
# Check if there are enough valid (non -inf) confidences
valid_conf_count = (conf_slice > -torch.inf).sum().item()
actual_k = min(k_val, valid_conf_count)
if actual_k > 0:
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
total_overall_steps = num_blocks * steps_per_block
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_generated_ids = x[:, prompt_len:]
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
@torch.no_grad()
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_mmu):
global MODEL, TOKENIZER, MASK_ID, DEVICE
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
steps = int(steps)
gen_length = int(gen_length)
block_length = int(block_length)
if thinking_mode_mmu:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
try:
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
except Exception as e:
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
processed_prompt_text = prompt_text
image_vq_ids_tensor = None
if uploaded_image_pil is not None:
try:
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE)
image = image.unsqueeze(0)
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349
except Exception as e:
yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}"
return
try:
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
else:
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
return
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = None
if image_vq_ids_tensor is not None:
if image_vq_ids_tensor.ndim == 1:
image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE),
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE),
image_vq_ids_tensor,
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE),
input_ids
], dim=1).long()
else:
input_ids = input_ids
except Exception as e:
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
return
batch_size = input_ids.shape[0]
prompt_len = input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
if gen_length == 0:
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
return
if block_length <= 0 or gen_length % block_length != 0 :
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
return
num_blocks = gen_length // block_length
if steps <=0 or steps % num_blocks != 0:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
return
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
steps_per_block
)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
if cfg_scale > 0.:
un_x = x.clone()
# For unconditional pass, mask out the original prompt tokens that are not padding
# raw_prompt_attention_mask is (B, prompt_len)
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
x_cfg_input = torch.cat([x, un_x], dim=0)
# Pass attention_mask for CFG if model expects it, covering both parts
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x_cfg_input)
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
else:
# Not passing explicit attention_mask here; relies on model's internal handling.
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
if remasking_strategy == 'low_confidence':
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
elif remasking_strategy == 'random':
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
else:
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
return
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
confidence_for_selection = torch.where(
candidate_positions_for_unmasking,
x0_probs,
-torch.inf
)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
if k_val > 0:
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
conf_slice = confidence_for_selection[j_batch_idx]
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
# Check if there are enough valid (non -inf) confidences
valid_conf_count = (conf_slice > -torch.inf).sum().item()
actual_k = min(k_val, valid_conf_count)
if actual_k > 0:
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
total_overall_steps = num_blocks * steps_per_block
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_generated_ids = x[:, prompt_len:]
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
css_styles = """
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
.highlighted-text span{
padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;
}
footer{display:none !important}
#live-update-scrollable-box {
max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */
overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */
display: block; /* 确保元素是块级元素,以便 max-height 生效 */
}
#think_btn {
background-color: #f3f4f6 !important;
border: 1px solid #d0d0d0 !important;
color: #111827 !important;
font-size: 16px !important;
font-weight: bold !important;
}
#think_btn:hover {
background-color: #e0e0e0 !important;
border: 1px solid #c0c0c0 !important;
color: #222 !important;
}
#think_btn:active {
background-color: #2563eb !important;
border: 1px solid #b0b0b0 !important;
color: white !important;
}
"""
# thinking_mode_t2i = gr.State(False)
def toggle_thinking_mode_lm(current_thinking_mode):
# print(f"current_thinking_mode: {current_thinking_mode}")
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
def toggle_thinking_mode_mmu(current_thinking_mode):
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
color_map_config = {
"MASK": "lightgrey",
"GEN": "#DCABFA",
}
theme = gr.themes.Ocean(
primary_hue="fuchsia",
)
with gr.Blocks(css=css_styles, theme=theme) as demo:
# with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
# with gr.Blocks() as demo:
thinking_mode_lm = gr.State(False)
thinking_mode_mmu = gr.State(False)
gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>MMaDA </h1>")
gr.Markdown("Interactively explore the step-by-step generation process of a diffusion language model. "
"The model begins with a fully masked sequence (except for the prompt) and progressively refines it by unmasking tokens.")
gr.Markdown("### Select Model")
with gr.Row():
model_select_radio = gr.Radio(
label="Select Text Generation Model",
choices=MODEL_CHOICES,
value=MODEL_CHOICES[0]
)
model_load_status_box = gr.Textbox(
label="Model Load Status",
interactive=False,
lines=3,
max_lines=5
)
gr.Markdown("## Part 1. Text Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
think_button_lm = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
with gr.Row():
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
with gr.Row():
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
# gr.Markdown("## Live Generation Process")
output_visualization_box_lm = gr.HighlightedText(
label="Live Generation Process",
show_legend=True,
color_map=color_map_config,
combine_adjacent=False,
interactive=False,
elem_id="live-update-scrollable-box",
)
# gr.Markdown("## Final Generated Text")
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
gr.Examples(
examples=[
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm],
outputs=[output_visualization_box_lm, output_final_text_box_lm],
fn=generate_viz_wrapper_lm,
)
gr.Markdown("---")
gr.Markdown("## Part 2. Multimodal Understanding")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_mmu = gr.Textbox(
label="Enter your prompt:",
lines=3,
value="Please describe this image in detail."
)
think_button_mmu = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
with gr.Row():
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
with gr.Row():
image_upload_box = gr.Image(type="pil", label="Upload Image")
with gr.Row():
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
gr.Markdown("## Live Generation Process")
output_visualization_box_mmu = gr.HighlightedText(
label="Token Sequence (Live Update)",
show_legend=True,
color_map=color_map_config,
combine_adjacent=False,
interactive=False,
elem_id="live-update-scrollable-box",
)
gr.Markdown("## Final Generated Text")
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
gr.Examples(
examples=[
[
"mmu_validation_2/sunflower.jpg",
"Please describe this image in detail.",
256,
512,
128,
1,
0,
"low_confidence"
],
[
"mmu_validation_2/woman.jpg",
"Please describe this image in detail.",
256,
512,
128,
1,
0,
"low_confidence"
]
],
inputs=[
image_upload_box,
prompt_input_box_mmu,
steps_slider_mmu,
gen_length_slider_mmu,
block_length_slider_mmu,
temperature_slider_mmu,
cfg_scale_slider_mmu,
remasking_dropdown_mmu
],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
fn=generate_viz_wrapper,
)
gr.Markdown("---")
gr.Markdown("## Part 3. Text-to-Image Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.")
with gr.Row():
scheduler_radio_t2i = gr.Radio(
choices=["cosine", "sigmoid", "linear"],
value="cosine",
label="Scheduler",
)
with gr.Row():
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
# gr.Markdown("## Live Generation Process")
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
gr.Examples(
examples=[
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"]
],
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i],
outputs=[output_image_t2i, output_status_t2i],
fn=generate_viz_wrapper_t2i,
)
run_button_ui_t2i.click(
fn=generate_viz_wrapper_t2i,
inputs=[
prompt_input_box_t2i,
steps_slider_t2i,
guidance_scale_slider_t2i,
scheduler_radio_t2i
],
outputs=[output_image_t2i, output_status_t2i]
)
clear_button_ui_t2i.click(
fn=lambda: (None, ""),
inputs=None,
outputs=[output_image_t2i, output_status_t2i],
queue=False
)
think_button_lm.click(
fn=toggle_thinking_mode_lm,
inputs=[thinking_mode_lm],
outputs=[thinking_mode_lm, think_button_lm]
)
think_button_mmu.click(
fn=toggle_thinking_mode_mmu,
inputs=[thinking_mode_mmu],
outputs=[thinking_mode_mmu, think_button_mmu]
)
def initialize_default_model():
default_model = "MMaDA-8B-Base"
result = handle_model_selection_change(default_model)
return default_model, result
demo.load(
fn=initialize_default_model,
inputs=None,
outputs=[model_select_radio, model_load_status_box],
queue=True
)
def clear_outputs():
return None, None, None # Clear image, visualization, and final text
clear_button_ui_lm.click(
fn=clear_outputs,
inputs=None,
outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm],
queue=False
)
clear_button_ui_mmu.click(
fn=clear_outputs,
inputs=None,
outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu],
queue=False
)
run_button_ui_lm.click(
fn=generate_viz_wrapper_lm,
inputs=[
prompt_input_box_lm,
steps_slider_lm,
gen_length_slider_lm,
block_length_slider_lm,
temperature_slider_lm,
cfg_scale_slider_lm,
remasking_dropdown_lm,
thinking_mode_lm
],
outputs=[output_visualization_box_lm, output_final_text_box_lm]
)
run_button_ui_mmu.click(
fn=generate_viz_wrapper,
inputs=[
image_upload_box,
prompt_input_box_mmu,
steps_slider_mmu,
gen_length_slider_mmu,
block_length_slider_mmu,
temperature_slider_mmu,
cfg_scale_slider_mmu,
remasking_dropdown_mmu,
thinking_mode_mmu
],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu]
)
if __name__ == "__main__":
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
demo.launch(share=True)