|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer |
|
from torchvision import transforms |
|
from models import MAGVITv2, get_mask_schedule, MMadaModelLM |
|
from training.prompting_utils import UniversalPrompting |
|
from PIL import Image |
|
|
|
def image_transform(image, resolution=256, normalize=True): |
|
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image) |
|
image = transforms.CenterCrop((resolution, resolution))(image) |
|
image = transforms.ToTensor()(image) |
|
if normalize: |
|
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image) |
|
return image |
|
|
|
def add_gumbel_noise(logits, temperature): |
|
""" |
|
Adds Gumbel noise to logits for stochastic sampling. |
|
Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1). |
|
This version is more numerically stable than a version involving exp() and division. |
|
""" |
|
if abs(temperature) < 1e-9: |
|
return logits |
|
|
|
logits = logits.to(torch.float64) |
|
|
|
|
|
noise = torch.rand_like(logits, dtype=torch.float64) |
|
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20) |
|
return logits + temperature * standard_gumbel_noise |
|
|
|
def get_num_transfer_tokens(mask_index, steps): |
|
mask_num = mask_index.sum(dim=1, keepdim=True) |
|
|
|
steps = max(1, int(steps)) |
|
base = mask_num // steps |
|
remainder = mask_num % steps |
|
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base |
|
for i in range(mask_num.size(0)): |
|
if remainder[i] > 0 : |
|
num_transfer_tokens[i, :remainder[i].item()] += 1 |
|
return num_transfer_tokens |
|
|
|
MODEL = None |
|
TOKENIZER = None |
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
MASK_ID = None |
|
uni_prompting = None |
|
VQ_MODEL = MAGVITv2().from_pretrained("/data_storage/shared/pretrained_models/models--showlab--magvitv2").to(DEVICE) |
|
|
|
DEFAULT_MODEL_PATH = "/data_storage/lbw/MMaDA/mmada-training-stage3-llada-instruct-512-cot-uni/checkpoint-210000/unwrapped_model" |
|
CURRENT_MODEL_PATH = None |
|
|
|
MODEL_CHOICES = [ |
|
"MMaDA-8B-Base", |
|
"MMaDA-8B-MixCoT (coming soon)", |
|
"MMaDA-8B-Max (coming soon)" |
|
] |
|
MODEL_ACTUAL_PATHS = { |
|
"MMaDA-8B-Base": DEFAULT_MODEL_PATH, |
|
} |
|
|
|
def clear_outputs_action(): |
|
return None, None |
|
|
|
def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status): |
|
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting |
|
|
|
if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load: |
|
return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}" |
|
|
|
CURRENT_MODEL_PATH = model_path_to_load |
|
|
|
status_msg_parts = [f"Loading '{model_display_name_for_status}'..."] |
|
try: |
|
TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True) |
|
status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.") |
|
|
|
MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval() |
|
status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.") |
|
|
|
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) |
|
|
|
if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None: |
|
MASK_ID = TOKENIZER.mask_token_id |
|
status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.") |
|
else: |
|
MASK_ID = 126336 |
|
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.") |
|
|
|
if TOKENIZER.pad_token_id is None: |
|
if TOKENIZER.eos_token_id is not None: |
|
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id |
|
TOKENIZER.pad_token = TOKENIZER.eos_token |
|
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).") |
|
else: |
|
status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.") |
|
|
|
if TOKENIZER.eos_token_id is None: |
|
status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.") |
|
|
|
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}" |
|
|
|
return " ".join(status_msg_parts) |
|
except Exception as e: |
|
MODEL = None |
|
TOKENIZER = None |
|
MASK_ID = None |
|
CURRENT_MODEL_PATH = None |
|
return f"Error loading model '{model_display_name_for_status}': {str(e)}" |
|
|
|
def handle_model_selection_change(selected_model_name_ui): |
|
if "coming soon" in selected_model_name_ui.lower(): |
|
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH |
|
MODEL = None |
|
TOKENIZER = None |
|
MASK_ID = None |
|
CURRENT_MODEL_PATH = None |
|
return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'." |
|
|
|
actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui) |
|
if not actual_path: |
|
return f"Path for '{selected_model_name_ui}' is not defined. Cannot load." |
|
|
|
return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui) |
|
|
|
|
|
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask): |
|
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0: |
|
return [("Error in sequence data for visualization.", "ERROR")] |
|
|
|
current_x_ids_batch = current_x_ids_batch[:, prompt_len:] |
|
seq_ids = current_x_ids_batch[0].tolist() |
|
eos_token_id = tk.eos_token_id |
|
|
|
|
|
|
|
intermediate_tuples = [] |
|
for j, token_id_int in enumerate(seq_ids): |
|
try: |
|
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
except Exception: |
|
token_str = f"[ID:{token_id_int}]" |
|
|
|
label = "ERROR" |
|
if token_id_int == current_mask_id: |
|
token_str = "[MASK]" |
|
label = "MASK" |
|
else: |
|
label = "GEN" |
|
intermediate_tuples.append((token_str, label, token_id_int)) |
|
|
|
return intermediate_tuples |
|
|
|
@torch.no_grad() |
|
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting |
|
|
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." |
|
return |
|
steps = int(steps) |
|
guidance_scale = float(guidance_scale) |
|
|
|
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID |
|
prompt_text = [prompt_text] |
|
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen') |
|
|
|
if guidance_scale > 0: |
|
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen') |
|
else: |
|
uncond_input_ids, uncond_attention_mask = None, None |
|
|
|
mask_schedule = get_mask_schedule(mask_schedule) |
|
blank_image = Image.new("RGB", (512, 512), (255, 255, 255)) |
|
yield blank_image, "Starting generation..." |
|
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise( |
|
input_ids = input_ids, |
|
uncond_input_ids = uncond_input_ids, |
|
attention_mask = attention_mask, |
|
uncond_attention_mask = uncond_attention_mask, |
|
temperature=1.0, |
|
timesteps = steps, |
|
guidance_scale = guidance_scale, |
|
noise_schedule = mask_schedule, |
|
noise_type = "mask", |
|
seq_len = 1024, |
|
vq_model = VQ_MODEL, |
|
uni_prompting=uni_prompting): |
|
yield image_step, status_msg_step |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature, |
|
cfg_scale, remasking_strategy, thinking_mode_lm): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE |
|
print(f"thinking_mode_lm: {thinking_mode_lm}") |
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." |
|
return |
|
|
|
steps = int(steps) |
|
gen_length = int(gen_length) |
|
block_length = int(block_length) |
|
|
|
if thinking_mode_lm: |
|
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text |
|
|
|
try: |
|
m = [{"role": "user", "content": prompt_text}] |
|
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
except Exception as e: |
|
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" |
|
processed_prompt_text = prompt_text |
|
try: |
|
if TOKENIZER.pad_token_id is None: |
|
if TOKENIZER.eos_token_id is not None: |
|
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id |
|
else: |
|
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." |
|
return |
|
|
|
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) |
|
raw_prompt_attention_mask = None |
|
|
|
except Exception as e: |
|
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" |
|
return |
|
|
|
|
|
|
|
batch_size = input_ids.shape[0] |
|
prompt_len = input_ids.shape[1] |
|
|
|
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) |
|
x[:, :prompt_len] = input_ids.clone() |
|
|
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" |
|
|
|
if gen_length == 0: |
|
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" |
|
return |
|
|
|
if block_length <= 0 or gen_length % block_length != 0 : |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ |
|
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." |
|
return |
|
num_blocks = gen_length // block_length |
|
|
|
if steps <=0 or steps % num_blocks != 0: |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ |
|
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" |
|
return |
|
steps_per_block = steps // num_blocks |
|
|
|
for num_block_iter in range(num_blocks): |
|
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length |
|
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length |
|
|
|
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ |
|
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) |
|
|
|
num_transfer_tokens_for_this_block = get_num_transfer_tokens( |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], |
|
steps_per_block |
|
) |
|
|
|
for i_step_in_block in range(steps_per_block): |
|
mask_index_global = (x == MASK_ID) |
|
|
|
if cfg_scale > 0.: |
|
un_x = x.clone() |
|
|
|
|
|
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() |
|
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID |
|
|
|
x_cfg_input = torch.cat([x, un_x], dim=0) |
|
|
|
|
|
model_output = MODEL(x_cfg_input) |
|
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) |
|
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) |
|
else: |
|
|
|
model_output = MODEL(x) |
|
logits = model_output.logits |
|
|
|
logits_with_noise = add_gumbel_noise(logits, temperature=temperature) |
|
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) |
|
|
|
if remasking_strategy == 'low_confidence': |
|
probs = F.softmax(logits.to(torch.float64), dim=-1) |
|
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) |
|
elif remasking_strategy == 'random': |
|
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) |
|
else: |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" |
|
return |
|
|
|
confidence_for_selection = torch.full_like(x0_probs, -torch.inf) |
|
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current |
|
confidence_for_selection = torch.where( |
|
candidate_positions_for_unmasking, |
|
x0_probs, |
|
-torch.inf |
|
) |
|
|
|
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) |
|
|
|
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) |
|
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] |
|
|
|
for j_batch_idx in range(batch_size): |
|
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), |
|
candidate_positions_for_unmasking[j_batch_idx].sum().item()) |
|
|
|
if k_val > 0: |
|
|
|
conf_slice = confidence_for_selection[j_batch_idx] |
|
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) |
|
|
|
|
|
valid_conf_count = (conf_slice > -torch.inf).sum().item() |
|
actual_k = min(k_val, valid_conf_count) |
|
|
|
if actual_k > 0: |
|
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) |
|
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True |
|
|
|
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] |
|
|
|
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 |
|
total_overall_steps = num_blocks * steps_per_block |
|
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg |
|
|
|
final_generated_ids = x[:, prompt_len:] |
|
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) |
|
|
|
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str |
|
|
|
@torch.no_grad() |
|
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature, |
|
cfg_scale, remasking_strategy, thinking_mode_mmu): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE |
|
|
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." |
|
return |
|
|
|
steps = int(steps) |
|
gen_length = int(gen_length) |
|
block_length = int(block_length) |
|
|
|
if thinking_mode_mmu: |
|
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text |
|
|
|
try: |
|
m = [{"role": "user", "content": prompt_text}] |
|
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
except Exception as e: |
|
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" |
|
processed_prompt_text = prompt_text |
|
|
|
image_vq_ids_tensor = None |
|
if uploaded_image_pil is not None: |
|
try: |
|
|
|
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE) |
|
image = image.unsqueeze(0) |
|
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349 |
|
except Exception as e: |
|
yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}" |
|
return |
|
|
|
|
|
try: |
|
if TOKENIZER.pad_token_id is None: |
|
if TOKENIZER.eos_token_id is not None: |
|
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id |
|
else: |
|
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." |
|
return |
|
|
|
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) |
|
raw_prompt_attention_mask = None |
|
if image_vq_ids_tensor is not None: |
|
if image_vq_ids_tensor.ndim == 1: |
|
image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0) |
|
|
|
input_ids = torch.cat([ |
|
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE), |
|
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE), |
|
image_vq_ids_tensor, |
|
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE), |
|
input_ids |
|
], dim=1).long() |
|
|
|
else: |
|
input_ids = input_ids |
|
|
|
|
|
except Exception as e: |
|
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" |
|
return |
|
|
|
|
|
|
|
batch_size = input_ids.shape[0] |
|
prompt_len = input_ids.shape[1] |
|
|
|
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) |
|
x[:, :prompt_len] = input_ids.clone() |
|
|
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" |
|
|
|
if gen_length == 0: |
|
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" |
|
return |
|
|
|
if block_length <= 0 or gen_length % block_length != 0 : |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ |
|
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." |
|
return |
|
num_blocks = gen_length // block_length |
|
|
|
if steps <=0 or steps % num_blocks != 0: |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ |
|
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" |
|
return |
|
steps_per_block = steps // num_blocks |
|
|
|
for num_block_iter in range(num_blocks): |
|
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length |
|
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length |
|
|
|
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ |
|
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) |
|
|
|
num_transfer_tokens_for_this_block = get_num_transfer_tokens( |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], |
|
steps_per_block |
|
) |
|
|
|
for i_step_in_block in range(steps_per_block): |
|
mask_index_global = (x == MASK_ID) |
|
|
|
if cfg_scale > 0.: |
|
un_x = x.clone() |
|
|
|
|
|
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() |
|
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID |
|
|
|
x_cfg_input = torch.cat([x, un_x], dim=0) |
|
|
|
|
|
model_output = MODEL(x_cfg_input) |
|
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) |
|
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) |
|
else: |
|
|
|
model_output = MODEL(x) |
|
logits = model_output.logits |
|
|
|
logits_with_noise = add_gumbel_noise(logits, temperature=temperature) |
|
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) |
|
|
|
if remasking_strategy == 'low_confidence': |
|
probs = F.softmax(logits.to(torch.float64), dim=-1) |
|
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) |
|
elif remasking_strategy == 'random': |
|
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) |
|
else: |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" |
|
return |
|
|
|
confidence_for_selection = torch.full_like(x0_probs, -torch.inf) |
|
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current |
|
confidence_for_selection = torch.where( |
|
candidate_positions_for_unmasking, |
|
x0_probs, |
|
-torch.inf |
|
) |
|
|
|
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) |
|
|
|
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) |
|
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] |
|
|
|
for j_batch_idx in range(batch_size): |
|
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), |
|
candidate_positions_for_unmasking[j_batch_idx].sum().item()) |
|
|
|
if k_val > 0: |
|
|
|
conf_slice = confidence_for_selection[j_batch_idx] |
|
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) |
|
|
|
|
|
valid_conf_count = (conf_slice > -torch.inf).sum().item() |
|
actual_k = min(k_val, valid_conf_count) |
|
|
|
if actual_k > 0: |
|
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) |
|
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True |
|
|
|
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] |
|
|
|
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 |
|
total_overall_steps = num_blocks * steps_per_block |
|
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg |
|
|
|
final_generated_ids = x[:, prompt_len:] |
|
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) |
|
|
|
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str |
|
|
|
|
|
css_styles = """ |
|
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;} |
|
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;} |
|
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;} |
|
|
|
.highlighted-text span{ |
|
padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6; |
|
} |
|
|
|
footer{display:none !important} |
|
|
|
#live-update-scrollable-box { |
|
max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */ |
|
overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */ |
|
display: block; /* 确保元素是块级元素,以便 max-height 生效 */ |
|
|
|
} |
|
#think_btn { |
|
background-color: #f3f4f6 !important; |
|
border: 1px solid #d0d0d0 !important; |
|
color: #111827 !important; |
|
font-size: 16px !important; |
|
font-weight: bold !important; |
|
} |
|
#think_btn:hover { |
|
background-color: #e0e0e0 !important; |
|
border: 1px solid #c0c0c0 !important; |
|
color: #222 !important; |
|
} |
|
#think_btn:active { |
|
background-color: #2563eb !important; |
|
border: 1px solid #b0b0b0 !important; |
|
color: white !important; |
|
} |
|
""" |
|
|
|
|
|
|
|
def toggle_thinking_mode_lm(current_thinking_mode): |
|
|
|
new_state = not current_thinking_mode |
|
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" |
|
return new_state, gr.update(value=new_label) |
|
|
|
def toggle_thinking_mode_mmu(current_thinking_mode): |
|
new_state = not current_thinking_mode |
|
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" |
|
return new_state, gr.update(value=new_label) |
|
|
|
|
|
color_map_config = { |
|
"MASK": "lightgrey", |
|
"GEN": "#DCABFA", |
|
} |
|
|
|
theme = gr.themes.Ocean( |
|
primary_hue="fuchsia", |
|
) |
|
with gr.Blocks(css=css_styles, theme=theme) as demo: |
|
|
|
|
|
thinking_mode_lm = gr.State(False) |
|
thinking_mode_mmu = gr.State(False) |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>MMaDA </h1>") |
|
gr.Markdown("Interactively explore the step-by-step generation process of a diffusion language model. " |
|
"The model begins with a fully masked sequence (except for the prompt) and progressively refines it by unmasking tokens.") |
|
gr.Markdown("### Select Model") |
|
with gr.Row(): |
|
model_select_radio = gr.Radio( |
|
label="Select Text Generation Model", |
|
choices=MODEL_CHOICES, |
|
value=MODEL_CHOICES[0] |
|
) |
|
model_load_status_box = gr.Textbox( |
|
label="Model Load Status", |
|
interactive=False, |
|
lines=3, |
|
max_lines=5 |
|
) |
|
|
|
gr.Markdown("## Part 1. Text Generation") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?") |
|
think_button_lm = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn") |
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") |
|
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") |
|
with gr.Row(): |
|
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") |
|
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") |
|
with gr.Row(): |
|
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") |
|
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") |
|
|
|
|
|
with gr.Row(): |
|
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3) |
|
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1) |
|
|
|
with gr.Column(scale=3): |
|
|
|
output_visualization_box_lm = gr.HighlightedText( |
|
label="Live Generation Process", |
|
show_legend=True, |
|
color_map=color_map_config, |
|
combine_adjacent=False, |
|
interactive=False, |
|
elem_id="live-update-scrollable-box", |
|
) |
|
|
|
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"], |
|
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"] |
|
], |
|
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm], |
|
outputs=[output_visualization_box_lm, output_final_text_box_lm], |
|
fn=generate_viz_wrapper_lm, |
|
) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Part 2. Multimodal Understanding") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input_box_mmu = gr.Textbox( |
|
label="Enter your prompt:", |
|
lines=3, |
|
value="Please describe this image in detail." |
|
) |
|
think_button_mmu = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn") |
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") |
|
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") |
|
with gr.Row(): |
|
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") |
|
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") |
|
with gr.Row(): |
|
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") |
|
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") |
|
|
|
with gr.Row(): |
|
image_upload_box = gr.Image(type="pil", label="Upload Image") |
|
|
|
with gr.Row(): |
|
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3) |
|
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1) |
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("## Live Generation Process") |
|
output_visualization_box_mmu = gr.HighlightedText( |
|
label="Token Sequence (Live Update)", |
|
show_legend=True, |
|
color_map=color_map_config, |
|
combine_adjacent=False, |
|
interactive=False, |
|
elem_id="live-update-scrollable-box", |
|
) |
|
gr.Markdown("## Final Generated Text") |
|
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"mmu_validation_2/sunflower.jpg", |
|
"Please describe this image in detail.", |
|
256, |
|
512, |
|
128, |
|
1, |
|
0, |
|
"low_confidence" |
|
], |
|
[ |
|
"mmu_validation_2/woman.jpg", |
|
"Please describe this image in detail.", |
|
256, |
|
512, |
|
128, |
|
1, |
|
0, |
|
"low_confidence" |
|
] |
|
], |
|
inputs=[ |
|
image_upload_box, |
|
prompt_input_box_mmu, |
|
steps_slider_mmu, |
|
gen_length_slider_mmu, |
|
block_length_slider_mmu, |
|
temperature_slider_mmu, |
|
cfg_scale_slider_mmu, |
|
remasking_dropdown_mmu |
|
], |
|
outputs=[output_visualization_box_mmu, output_final_text_box_mmu], |
|
fn=generate_viz_wrapper, |
|
) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Part 3. Text-to-Image Generation") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.") |
|
|
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") |
|
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.") |
|
|
|
|
|
with gr.Row(): |
|
scheduler_radio_t2i = gr.Radio( |
|
choices=["cosine", "sigmoid", "linear"], |
|
value="cosine", |
|
label="Scheduler", |
|
) |
|
|
|
with gr.Row(): |
|
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3) |
|
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1) |
|
|
|
|
|
with gr.Column(scale=3): |
|
|
|
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil") |
|
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"], |
|
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"] |
|
], |
|
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], |
|
outputs=[output_image_t2i, output_status_t2i], |
|
fn=generate_viz_wrapper_t2i, |
|
) |
|
|
|
run_button_ui_t2i.click( |
|
fn=generate_viz_wrapper_t2i, |
|
inputs=[ |
|
prompt_input_box_t2i, |
|
steps_slider_t2i, |
|
guidance_scale_slider_t2i, |
|
scheduler_radio_t2i |
|
], |
|
outputs=[output_image_t2i, output_status_t2i] |
|
) |
|
|
|
clear_button_ui_t2i.click( |
|
fn=lambda: (None, ""), |
|
inputs=None, |
|
outputs=[output_image_t2i, output_status_t2i], |
|
queue=False |
|
) |
|
|
|
think_button_lm.click( |
|
fn=toggle_thinking_mode_lm, |
|
inputs=[thinking_mode_lm], |
|
outputs=[thinking_mode_lm, think_button_lm] |
|
) |
|
|
|
think_button_mmu.click( |
|
fn=toggle_thinking_mode_mmu, |
|
inputs=[thinking_mode_mmu], |
|
outputs=[thinking_mode_mmu, think_button_mmu] |
|
) |
|
|
|
|
|
|
|
def initialize_default_model(): |
|
default_model = "MMaDA-8B-Base" |
|
result = handle_model_selection_change(default_model) |
|
return default_model, result |
|
|
|
demo.load( |
|
fn=initialize_default_model, |
|
inputs=None, |
|
outputs=[model_select_radio, model_load_status_box], |
|
queue=True |
|
) |
|
|
|
def clear_outputs(): |
|
return None, None, None |
|
|
|
clear_button_ui_lm.click( |
|
fn=clear_outputs, |
|
inputs=None, |
|
outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm], |
|
queue=False |
|
) |
|
clear_button_ui_mmu.click( |
|
fn=clear_outputs, |
|
inputs=None, |
|
outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], |
|
queue=False |
|
) |
|
|
|
run_button_ui_lm.click( |
|
fn=generate_viz_wrapper_lm, |
|
inputs=[ |
|
prompt_input_box_lm, |
|
steps_slider_lm, |
|
gen_length_slider_lm, |
|
block_length_slider_lm, |
|
temperature_slider_lm, |
|
cfg_scale_slider_lm, |
|
remasking_dropdown_lm, |
|
thinking_mode_lm |
|
], |
|
outputs=[output_visualization_box_lm, output_final_text_box_lm] |
|
) |
|
|
|
run_button_ui_mmu.click( |
|
fn=generate_viz_wrapper, |
|
inputs=[ |
|
image_upload_box, |
|
prompt_input_box_mmu, |
|
steps_slider_mmu, |
|
gen_length_slider_mmu, |
|
block_length_slider_mmu, |
|
temperature_slider_mmu, |
|
cfg_scale_slider_mmu, |
|
remasking_dropdown_mmu, |
|
thinking_mode_mmu |
|
], |
|
outputs=[output_visualization_box_mmu, output_final_text_box_mmu] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
print(f"Starting Gradio App. Attempting to use device: {DEVICE}") |
|
demo.launch(share=True) |