import gradio as gr import torch import numpy as np import torch.nn.functional as F from transformers import AutoTokenizer from torchvision import transforms from models import MAGVITv2, get_mask_schedule, MMadaModelLM from training.prompting_utils import UniversalPrompting from PIL import Image import spaces def image_transform(image, resolution=256, normalize=True): image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image) image = transforms.CenterCrop((resolution, resolution))(image) image = transforms.ToTensor()(image) if normalize: image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image) return image def add_gumbel_noise(logits, temperature): """ Adds Gumbel noise to logits for stochastic sampling. Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1). This version is more numerically stable than a version involving exp() and division. """ if abs(temperature) < 1e-9: # Effectively zero temperature return logits # Ensure logits are float64 for precision with noise, as suggested by user context logits = logits.to(torch.float64) # Standard Gumbel noise: -log(-log(U)), U ~ Uniform(0,1) # Add small epsilon for numerical stability inside logs noise = torch.rand_like(logits, dtype=torch.float64) standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20) return logits + temperature * standard_gumbel_noise def get_num_transfer_tokens(mask_index, steps): mask_num = mask_index.sum(dim=1, keepdim=True) # Ensure steps is at least 1 to avoid division by zero if mask_num is also 0 (though sum should be >=0) steps = max(1, int(steps)) # Ensure steps is a positive integer base = mask_num // steps remainder = mask_num % steps num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base for i in range(mask_num.size(0)): # Iterate over batch if remainder[i] > 0 : # Ensure remainder is positive before indexing num_transfer_tokens[i, :remainder[i].item()] += 1 # .item() for single value tensor to int return num_transfer_tokens DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-Base" # Default MASK_ID = 126336 MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval() TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True) uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2").to(DEVICE) CURRENT_MODEL_PATH = None MODEL_CHOICES = [ "MMaDA-8B-Base", "MMaDA-8B-MixCoT (coming soon)", "MMaDA-8B-Max (coming soon)" ] MODEL_ACTUAL_PATHS = { "MMaDA-8B-Base": DEFAULT_MODEL_PATH, } def clear_outputs_action(): return None, None @spaces.GPU def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status): global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load: return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}" CURRENT_MODEL_PATH = model_path_to_load status_msg_parts = [f"Loading '{model_display_name_for_status}'..."] # try: TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True) status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.") MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval() status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.") uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None: MASK_ID = TOKENIZER.mask_token_id status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.") else: MASK_ID = 126336 status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.") if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id TOKENIZER.pad_token = TOKENIZER.eos_token status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).") else: status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.") if TOKENIZER.eos_token_id is None: # Important for cleaning up output in visualization status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.") TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}" return " ".join(status_msg_parts) # except Exception as e: # MODEL = None # TOKENIZER = None # MASK_ID = None # CURRENT_MODEL_PATH = None # return f"Error loading model '{model_display_name_for_status}': {str(e)}" def handle_model_selection_change(selected_model_name_ui): if "coming soon" in selected_model_name_ui.lower(): global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH MODEL = None TOKENIZER = None MASK_ID = None CURRENT_MODEL_PATH = None return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'." actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui) if not actual_path: return f"Path for '{selected_model_name_ui}' is not defined. Cannot load." return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui) def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask): if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0: return [("Error in sequence data for visualization.", "ERROR")] # only answer part current_x_ids_batch = current_x_ids_batch[:, prompt_len:] seq_ids = current_x_ids_batch[0].tolist() eos_token_id = tk.eos_token_id # Get EOS token ID # Stage 1: Build initial list of tuples with (token_str, label, token_id_int) # This helps in identifying EOS tokens later without re-checking the type. intermediate_tuples = [] for j, token_id_int in enumerate(seq_ids): try: token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False) except Exception: # Handle cases where a token ID might be problematic (e.g. with mock) token_str = f"[ID:{token_id_int}]" label = "ERROR" if token_id_int == current_mask_id: token_str = "[MASK]" label = "MASK" else: label = "GEN" intermediate_tuples.append((token_str, label, token_id_int)) return intermediate_tuples @torch.no_grad() @spaces.GPU def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"): global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) guidance_scale = float(guidance_scale) image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID prompt_text = [prompt_text] input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen') if guidance_scale > 0: uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen') else: uncond_input_ids, uncond_attention_mask = None, None mask_schedule = get_mask_schedule(mask_schedule) blank_image = Image.new("RGB", (512, 512), (255, 255, 255)) yield blank_image, "Starting generation..." for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise( input_ids = input_ids, uncond_input_ids = uncond_input_ids, attention_mask = attention_mask, uncond_attention_mask = uncond_attention_mask, temperature=1.0, timesteps = steps, guidance_scale = guidance_scale, noise_schedule = mask_schedule, noise_type = "mask", seq_len = 1024, vq_model = VQ_MODEL, uni_prompting=uni_prompting): yield image_step, status_msg_step @torch.no_grad() @spaces.GPU def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature, cfg_scale, remasking_strategy, thinking_mode_lm=False): global MODEL, TOKENIZER, MASK_ID, DEVICE if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) gen_length = int(gen_length) block_length = int(block_length) if thinking_mode_lm: prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within tags, i.e. reasoning process here answer here\n" + prompt_text try: m = [{"role": "user", "content": prompt_text}] processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) except Exception as e: yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" processed_prompt_text = prompt_text try: if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id else: # Should have been caught by load_model, but double check yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." return input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) raw_prompt_attention_mask = None except Exception as e: yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" return batch_size = input_ids.shape[0] prompt_len = input_ids.shape[1] x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) x[:, :prompt_len] = input_ids.clone() yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" if gen_length == 0: final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" return if block_length <= 0 or gen_length % block_length != 0 : yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." return num_blocks = gen_length // block_length if steps <=0 or steps % num_blocks != 0: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" return steps_per_block = steps // num_blocks for num_block_iter in range(num_blocks): current_block_start_idx_in_x = prompt_len + num_block_iter * block_length current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) num_transfer_tokens_for_this_block = get_num_transfer_tokens( block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block ) for i_step_in_block in range(steps_per_block): mask_index_global = (x == MASK_ID) if cfg_scale > 0.: un_x = x.clone() # For unconditional pass, mask out the original prompt tokens that are not padding # raw_prompt_attention_mask is (B, prompt_len) prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID x_cfg_input = torch.cat([x, un_x], dim=0) # Pass attention_mask for CFG if model expects it, covering both parts # For simplicity, not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x_cfg_input) logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) else: # Not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x) logits = model_output.logits logits_with_noise = add_gumbel_noise(logits, temperature=temperature) x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) if remasking_strategy == 'low_confidence': probs = F.softmax(logits.to(torch.float64), dim=-1) x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) elif remasking_strategy == 'random': x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) else: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" return confidence_for_selection = torch.full_like(x0_probs, -torch.inf) candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current confidence_for_selection = torch.where( candidate_positions_for_unmasking, x0_probs, -torch.inf ) x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] for j_batch_idx in range(batch_size): k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large if k_val > 0: # Ensure confidence_for_selection[j_batch_idx] is 1D for topk conf_slice = confidence_for_selection[j_batch_idx] if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs # Check if there are enough valid (non -inf) confidences valid_conf_count = (conf_slice > -torch.inf).sum().item() actual_k = min(k_val, valid_conf_count) if actual_k > 0: _, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 total_overall_steps = num_blocks * steps_per_block status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg final_generated_ids = x[:, prompt_len:] final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str @torch.no_grad() @spaces.GPU def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature, cfg_scale, remasking_strategy, thinking_mode_mmu=False): global MODEL, TOKENIZER, MASK_ID, DEVICE if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) gen_length = int(gen_length) block_length = int(block_length) if thinking_mode_mmu: prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within tags, i.e. reasoning process here answer here\n" + prompt_text try: m = [{"role": "user", "content": prompt_text}] processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) except Exception as e: yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" processed_prompt_text = prompt_text image_vq_ids_tensor = None if uploaded_image_pil is not None: try: image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE) image = image.unsqueeze(0) image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349 except Exception as e: yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}" return try: if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id else: yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." return input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) raw_prompt_attention_mask = None if image_vq_ids_tensor is not None: if image_vq_ids_tensor.ndim == 1: image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0) input_ids = torch.cat([ (torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE), (torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE), image_vq_ids_tensor, (torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE), input_ids ], dim=1).long() else: input_ids = input_ids except Exception as e: yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" return batch_size = input_ids.shape[0] prompt_len = input_ids.shape[1] x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) x[:, :prompt_len] = input_ids.clone() yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" if gen_length == 0: final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" return if block_length <= 0 or gen_length % block_length != 0 : yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." return num_blocks = gen_length // block_length if steps <=0 or steps % num_blocks != 0: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" return steps_per_block = steps // num_blocks for num_block_iter in range(num_blocks): current_block_start_idx_in_x = prompt_len + num_block_iter * block_length current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) num_transfer_tokens_for_this_block = get_num_transfer_tokens( block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block ) for i_step_in_block in range(steps_per_block): mask_index_global = (x == MASK_ID) if cfg_scale > 0.: un_x = x.clone() # For unconditional pass, mask out the original prompt tokens that are not padding # raw_prompt_attention_mask is (B, prompt_len) prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID x_cfg_input = torch.cat([x, un_x], dim=0) # Pass attention_mask for CFG if model expects it, covering both parts # For simplicity, not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x_cfg_input) logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) else: # Not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x) logits = model_output.logits logits_with_noise = add_gumbel_noise(logits, temperature=temperature) x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) if remasking_strategy == 'low_confidence': probs = F.softmax(logits.to(torch.float64), dim=-1) x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) elif remasking_strategy == 'random': x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) else: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" return confidence_for_selection = torch.full_like(x0_probs, -torch.inf) candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current confidence_for_selection = torch.where( candidate_positions_for_unmasking, x0_probs, -torch.inf ) x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] for j_batch_idx in range(batch_size): k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large if k_val > 0: # Ensure confidence_for_selection[j_batch_idx] is 1D for topk conf_slice = confidence_for_selection[j_batch_idx] if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs # Check if there are enough valid (non -inf) confidences valid_conf_count = (conf_slice > -torch.inf).sum().item() actual_k = min(k_val, valid_conf_count) if actual_k > 0: _, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 total_overall_steps = num_blocks * steps_per_block status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg final_generated_ids = x[:, prompt_len:] final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str css_styles = """ .gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;} .gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;} .gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;} .highlighted-text span{ padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6; } footer{display:none !important} #live-update-scrollable-box { max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */ overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */ display: block; /* 确保元素是块级元素,以便 max-height 生效 */ } #think_btn { background-color: #f3f4f6 !important; border: 1px solid #d0d0d0 !important; color: #111827 !important; font-size: 16px !important; font-weight: bold !important; } #think_btn:hover { background-color: #e0e0e0 !important; border: 1px solid #c0c0c0 !important; color: #222 !important; } #think_btn:active { background-color: #2563eb !important; border: 1px solid #b0b0b0 !important; color: white !important; } """ # thinking_mode_t2i = gr.State(False) def toggle_thinking_mode_lm(current_thinking_mode): new_state = not current_thinking_mode new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" return new_state, gr.update(value=new_label) def toggle_thinking_mode_mmu(current_thinking_mode): new_state = not current_thinking_mode new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" return new_state, gr.update(value=new_label) color_map_config = { "MASK": "lightgrey", "GEN": "#DCABFA", } theme = gr.themes.Ocean( primary_hue="fuchsia", ) with gr.Blocks(css=css_styles, theme=theme) as demo: # with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo: # with gr.Blocks() as demo: thinking_mode_lm = gr.State(False) thinking_mode_mmu = gr.State(False) # gr.Markdown("

MMaDA: Multimodal Large Diffusion Language Models

") # gr.Markdown("MMaDA is a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation") # gr.Markdown("Github: [Gen-Verse/MMaDA](https://github.com/Gen-Verse/MMaDA)") # gr.Markdown("Paper: [MMaDA: Multimodal Large Diffusion Language Models]()") gr.HTML("""

MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.

📄 Paper    |    💻 Code

""") with gr.Row(): model_select_radio = gr.Radio( label="Select Text Generation Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0] ) model_load_status_box = gr.Textbox( label="Model Load Status", interactive=False, lines=3, max_lines=5 ) gr.Markdown("## Part 1. Text Generation") with gr.Row(): with gr.Column(scale=2): prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?") think_button_lm = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") with gr.Row(): block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") with gr.Row(): cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") with gr.Row(): run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3) clear_button_ui_lm = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): # gr.Markdown("## Live Generation Process") output_visualization_box_lm = gr.HighlightedText( label="Live Generation Process", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box", ) # gr.Markdown("## Final Generated Text") output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) gr.Examples( examples=[ ["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"], ["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"] ], inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm], outputs=[output_visualization_box_lm, output_final_text_box_lm], fn=generate_viz_wrapper_lm, cache_examples=False ) gr.Markdown("---") gr.Markdown("## Part 2. Multimodal Understanding") with gr.Row(): with gr.Column(scale=2): prompt_input_box_mmu = gr.Textbox( label="Enter your prompt:", lines=3, value="Please describe this image in detail." ) think_button_mmu = gr.Button("🧠 Enable Thinking Mode", elem_id="think_btn") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") with gr.Row(): block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") with gr.Row(): cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") with gr.Row(): image_upload_box = gr.Image(type="pil", label="Upload Image") with gr.Row(): run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3) clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): gr.Markdown("## Live Generation Process") output_visualization_box_mmu = gr.HighlightedText( label="Token Sequence (Live Update)", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box", ) gr.Markdown("## Final Generated Text") output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) gr.Examples( examples=[ [ "figs/sunflower.jpg", "Please describe this image in detail.", 256, 512, 128, 1, 0, "low_confidence" ], [ "figs/woman.jpg", "Please describe this image in detail.", 256, 512, 128, 1, 0, "low_confidence" ] ], inputs=[ image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu ], outputs=[output_visualization_box_mmu, output_final_text_box_mmu], fn=generate_viz_wrapper, cache_examples=False ) gr.Markdown("---") gr.Markdown("## Part 3. Text-to-Image Generation") with gr.Row(): with gr.Column(scale=2): prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.") with gr.Row(): scheduler_radio_t2i = gr.Radio( choices=["cosine", "sigmoid", "linear"], value="cosine", label="Scheduler", ) with gr.Row(): run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3) clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): # gr.Markdown("## Live Generation Process") output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil") output_status_t2i = gr.Textbox(label="Generation Status", interactive=False) gr.Examples( examples=[ ["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"], ["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"] ], inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], outputs=[output_image_t2i, output_status_t2i], fn=generate_viz_wrapper_t2i, cache_examples=False ) run_button_ui_t2i.click( fn=generate_viz_wrapper_t2i, inputs=[ prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i ], outputs=[output_image_t2i, output_status_t2i] ) clear_button_ui_t2i.click( fn=lambda: (None, ""), inputs=None, outputs=[output_image_t2i, output_status_t2i], queue=False ) think_button_lm.click( fn=toggle_thinking_mode_lm, inputs=[thinking_mode_lm], outputs=[thinking_mode_lm, think_button_lm] ) think_button_mmu.click( fn=toggle_thinking_mode_mmu, inputs=[thinking_mode_mmu], outputs=[thinking_mode_mmu, think_button_mmu] ) def initialize_default_model(): default_model = "MMaDA-8B-Base" result = handle_model_selection_change(default_model) return default_model, result demo.load( fn=initialize_default_model, inputs=None, outputs=[model_select_radio, model_load_status_box], queue=True ) def clear_outputs(): return None, None, None # Clear image, visualization, and final text clear_button_ui_lm.click( fn=clear_outputs, inputs=None, outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm], queue=False ) clear_button_ui_mmu.click( fn=clear_outputs, inputs=None, outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], queue=False ) run_button_ui_lm.click( fn=generate_viz_wrapper_lm, inputs=[ prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm, thinking_mode_lm ], outputs=[output_visualization_box_lm, output_final_text_box_lm] ) run_button_ui_mmu.click( fn=generate_viz_wrapper, inputs=[ image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu, thinking_mode_mmu ], outputs=[output_visualization_box_mmu, output_final_text_box_mmu] ) if __name__ == "__main__": print(f"Starting Gradio App. Attempting to use device: {DEVICE}") demo.launch(allowed_paths=["title.png"])