# coding=utf-8 # Copyright 2025 MMaDA team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. reserved_token_mapping = { '<|soi|>': 126084, '<|eoi|>': 126085, '<|sov|>': 126086, '<|eov|>': 126087, '<|t2i|>': 126088, '<|mmu|>': 126089, '<|t2v|>': 126090, '<|v2v|>': 126091, '<|lvg|>': 126092, '[iPAD]': 126093, '<|r2i|>': 126094, } import torch class UniversalPrompting(): def __init__(self, text_tokenizer, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), max_text_len=8000, max_seq_len=377, ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=False): """ :param text_tokenizer: original text tokenizer """ if not use_reserved_token: self.text_tokenizer = text_tokenizer self.text_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) self.text_tokenizer.add_tokens(list(special_tokens)) self.sptids_dict = {token: torch.tensor(self.text_tokenizer.convert_tokens_to_ids([token])) for token in special_tokens} self.sptids_dict['<|sot|>'] = torch.tensor([self.text_tokenizer.bos_token_id]) self.sptids_dict['<|eot|>'] = torch.tensor([self.text_tokenizer.eos_token_id]) self.sptids_dict['<|pad|>'] = torch.tensor([self.text_tokenizer.pad_token_id]) else: self.text_tokenizer = text_tokenizer self.sptids_dict = {} for token, token_id in reserved_token_mapping.items(): self.sptids_dict[token] = torch.tensor([token_id]) self.sptids_dict['<|sot|>'] = torch.tensor([self.text_tokenizer.bos_token_id]) self.sptids_dict['<|eot|>'] = torch.tensor([self.text_tokenizer.eos_token_id]) end_header_tokens = self.text_tokenizer.convert_tokens_to_ids(['<|end_header_id|>']) if end_header_tokens and len(end_header_tokens) > 0 and end_header_tokens[0]: self.sptids_dict['<|end_header_id|>'] = torch.tensor(end_header_tokens) self.sptids_dict['<|eot_id|>'] = torch.tensor(self.text_tokenizer.convert_tokens_to_ids(['<|eot_id|>'])) self.sptids_dict['<|start_header_id|>'] = torch.tensor(self.text_tokenizer.convert_tokens_to_ids(['<|start_header_id|>'])) else: special_tokens_dict = { 'additional_special_tokens': [ '<|start_header_id|>', '<|end_header_id|>', '<|eot_id|>' ] } num_added = self.text_tokenizer.add_special_tokens(special_tokens_dict) new_token_id = self.text_tokenizer.convert_tokens_to_ids(['<|end_header_id|>']) self.sptids_dict['<|end_header_id|>'] = torch.tensor(new_token_id) self.sptids_dict['<|eot_id|>'] = torch.tensor(self.text_tokenizer.convert_tokens_to_ids(['<|eot_id|>'])) self.sptids_dict['<|start_header_id|>'] = torch.tensor(self.text_tokenizer.convert_tokens_to_ids(['<|start_header_id|>'])) # plus 1 because at this time we add a task token before print(f"self.sptids_dict: {self.sptids_dict}") self.max_text_len = max_text_len + 1 self.pad_id = reserved_token_mapping['[iPAD]'] self.ignore_id = ignore_id self.cond_dropout_prob = cond_dropout_prob def t2i_prompt(self, text_ids, image_ids, labels): device = image_ids.device sequence_ids = [] attention_masks = [] label_ids = [] probs = torch.rand(len(text_ids)) for i in range(len(text_ids)): if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id] # randomly dropout text condition if probs[i] < self.cond_dropout_prob: temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id, self.text_tokenizer.eos_token_id] if self.max_text_len >= len(temp_ids): old_len = len(temp_ids) temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids temp_masks = [0] * (self.max_text_len - old_len) + [1] * (old_len + image_ids.shape[-1] + 2) else: # should add the eos token temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id] temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 2) # +2 for two special tokens # prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi] temp_label_ids = torch.cat([ # should we predict text tokens when doing image reconstruction? torch.tensor(temp_ids).to(device), self.sptids_dict['<|soi|>'].to(device), labels[i], self.sptids_dict['<|eoi|>'].to(device) ], dim=0) temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids) temp_ids = torch.cat([ torch.tensor(temp_ids).to(device), self.sptids_dict['<|soi|>'].to(device), image_ids[i], self.sptids_dict['<|eoi|>'].to(device) ], dim=0) # sequence_ids: [pad]...[pad] <|t2i|> text_1 ... text_n <|soi|> image_1 ... image_m <|eoi|> temp_masks = torch.tensor(temp_masks).to(device) sequence_ids.append(temp_ids.unsqueeze(0)) attention_masks.append(temp_masks.unsqueeze(0)) label_ids.append(temp_label_ids.unsqueeze(0)) return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0) def t2i_gen_prompt(self, text_ids, image_ids): device = image_ids.device sequence_ids = [] attention_masks = [] for i in range(len(text_ids)): if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] # note that, llama3 tokenizer automatically add the bot token at first but without eot temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id] if self.max_text_len >= len(temp_ids): old_len = len(temp_ids) temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids temp_masks = [0] * (self.max_text_len - old_len) + [1] * (old_len + image_ids.shape[-1] + 2) else: # should add the eos token temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id] temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 2) # +2 for two special tokens # prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi] temp_ids = torch.cat([ torch.tensor(temp_ids).to(device), self.sptids_dict['<|soi|>'].to(device), image_ids[i], self.sptids_dict['<|eoi|>'].to(device) ], dim=0) temp_masks = torch.tensor(temp_masks).to(device) sequence_ids.append(temp_ids.unsqueeze(0)) attention_masks.append(temp_masks.unsqueeze(0)) return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0) # language modeling def lm_prompt(self, text_ids, max_seq_len): sequence_ids = [] attention_masks = [] label_ids = [] for i in range(len(text_ids)): if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id] if max_seq_len >= len(temp_ids): temp_labels_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_seq_len - len(temp_ids)) temp_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_seq_len - len(temp_ids)) temp_masks = [1] * len(temp_ids) + [0] * (max_seq_len - len(temp_ids)) else: # In language modeling, we only process text tokens. We do not add the eos token if the text length # exceeds the max sequence length temp_labels_ids = temp_ids[:max_seq_len] temp_ids = temp_ids[:max_seq_len] temp_masks = [1] * len(temp_ids) # +2 for two special tokens # prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi] temp_ids = torch.tensor(temp_ids) temp_masks = torch.tensor(temp_masks) temp_labels_ids = torch.tensor(temp_labels_ids) sequence_ids.append(temp_ids.unsqueeze(0)) attention_masks.append(temp_masks.unsqueeze(0)) label_ids.append(temp_labels_ids.unsqueeze(0)) # input_ids, masks, labels return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0) # language modeling def lm_chat_prompt(self, text_ids, max_seq_len): sequence_ids = [] prompt_masks = [] label_ids = [] for i in range(len(text_ids)): if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id] if max_seq_len >= len(temp_ids): temp_labels_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_seq_len - len(temp_ids)) temp_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_seq_len - len(temp_ids)) else: # In language modeling, we only process text tokens. We do not add the eos token if the text length # exceeds the max sequence length temp_labels_ids = temp_ids[:max_seq_len] temp_ids = temp_ids[:max_seq_len] end_header_id = int(self.sptids_dict['<|end_header_id|>']) end_header_pos = -1 for pos in range(len(temp_ids) - 1, -1, -1): # 尝试从文本序列中寻找<|end_header_id|> if temp_ids[pos] == end_header_id: end_header_pos = pos break if end_header_pos != -1: prompt_length = end_header_pos + 1 else: prompt_length = 0 temp_masks = [1] * prompt_length + [0] * (len(temp_ids) - prompt_length) # prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi] temp_ids = torch.tensor(temp_ids) temp_masks = torch.tensor(temp_masks) temp_labels_ids = torch.tensor(temp_labels_ids) sequence_ids.append(temp_ids.unsqueeze(0)) prompt_masks.append(temp_masks.unsqueeze(0)) label_ids.append(temp_labels_ids.unsqueeze(0)) # input_ids, masks, labels return torch.cat(sequence_ids, dim=0), torch.cat(prompt_masks, dim=0), torch.cat(label_ids, dim=0) def mmu_prompt(self, image_ids, text_ids): device = image_ids.device sequence_ids = [] prompt_masks = [] label_ids = [] max_text_len = self.max_text_len - 1 for i in range(len(text_ids)): # note that, llama3 tokenizer automatically add the bot token at first but without eot # for empty list [] if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id] if max_text_len >= len(temp_ids): # minus 1 because task token was prepended to the former image tokens temp_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_text_len - len(temp_ids)) temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) + [0] * (max_text_len - len(temp_ids)) else: # should add the eos token temp_ids = temp_ids[:max_text_len - 1] + [self.text_tokenizer.eos_token_id] temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens # prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi] temp_label_ids = torch.cat([ torch.tensor([self.ignore_id]).to(device), torch.tensor([self.ignore_id]).to(device), torch.ones_like(image_ids[i]) * self.ignore_id, torch.tensor([self.ignore_id]).to(device), torch.tensor(temp_ids).to(device), ], dim=0) temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids) return_temp_ids = torch.cat([ self.sptids_dict['<|mmu|>'].to(device), # task token self.sptids_dict['<|soi|>'].to(device), image_ids[i], self.sptids_dict['<|eoi|>'].to(device), torch.tensor(temp_ids).to(device), ], dim=0) end_header_id = int(self.sptids_dict['<|end_header_id|>']) end_header_pos = -1 for pos in range(len(temp_ids) - 1, -1, -1): if temp_ids[pos] == end_header_id: end_header_pos = pos break if end_header_pos != -1: prompt_length = len(return_temp_ids) - len(temp_ids) + end_header_pos + 1 else: prompt_length = len(return_temp_ids) - len(temp_ids) predict_length = len(return_temp_ids) - prompt_length prompt_mask = [1] * prompt_length + [0] * predict_length prompt_mask = torch.tensor(prompt_mask).to(device) sequence_ids.append(return_temp_ids.unsqueeze(0)) prompt_masks.append(prompt_mask.unsqueeze(0)) label_ids.append(temp_label_ids.unsqueeze(0)) return torch.cat(sequence_ids, dim=0), torch.cat(prompt_masks, dim=0), torch.cat(label_ids, dim=0) def mmu_gen_prompt(self, image_ids, text_ids): device = image_ids.device sequence_ids = [] prompt_masks = [] max_text_len = self.max_text_len - 1 for i in range(len(text_ids)): if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0] != self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id] if max_text_len >= len(temp_ids): # minus 1 because task token was prepended to the former image tokens temp_ids = temp_ids + [self.text_tokenizer.eos_token_id] * (max_text_len - len(temp_ids)) else: # should add the eos token temp_ids = temp_ids[:max_text_len - 1] + [self.text_tokenizer.eos_token_id] # print(f"mmu temp_ids: {temp_ids}") return_temp_ids = torch.cat([ self.sptids_dict['<|mmu|>'].to(device), # task token self.sptids_dict['<|soi|>'].to(device), image_ids[i], self.sptids_dict['<|eoi|>'].to(device), torch.tensor(temp_ids).to(device), ], dim=0) end_header_id = int(self.sptids_dict['<|end_header_id|>']) end_header_pos = -1 for pos in range(len(temp_ids) - 1, -1, -1): if temp_ids[pos] == end_header_id: end_header_pos = pos break if end_header_pos != -1: prompt_length = len(return_temp_ids) - len(temp_ids) + end_header_pos + 1 else: prompt_length = len(return_temp_ids) - len(temp_ids) predict_length = len(temp_ids) - prompt_length print(f"prompt_length: {prompt_length}, predict_length: {predict_length}, all length: {len(return_temp_ids)}, {return_temp_ids[-predict_length:]}") prompt_mask = [1] * prompt_length + [0] * predict_length prompt_mask = torch.tensor(prompt_mask).to(device) sequence_ids.append(return_temp_ids.unsqueeze(0)) prompt_masks.append(prompt_mask.unsqueeze(0)) return torch.cat(sequence_ids, dim=0), torch.cat(prompt_masks, dim=0) def r2i_prompt(self, image_ids, text_ids): device = image_ids.device sequence_ids = [] prompt_masks = [] label_ids = [] r2i_id = int(self.sptids_dict['<|r2i|>']) soi_id = int(self.sptids_dict['<|soi|>']) eoi_id = int(self.sptids_dict['<|eoi|>']) max_text_len = self.max_text_len - 1 # 512,include BOS text EOS for i in range(len(text_ids)): # note that, llama3 tokenizer automatically add the bot token at first but without eot # for empty list [] if len(text_ids[i]) == 0: text_ids[i] = [self.text_tokenizer.bos_token_id] elif text_ids[i][0]!= self.text_tokenizer.bos_token_id: text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i] text_ids_with_bos_eos = text_ids[i] + [self.text_tokenizer.eos_token_id] if max_text_len >= len(text_ids_with_bos_eos): # minus 1 because task token was prepended to the former image tokens text_ids_full_len = text_ids_with_bos_eos + [self.text_tokenizer.eos_token_id] * (max_text_len - len(text_ids_with_bos_eos)) else: # should add the eos token text_ids_full_len = text_ids_with_bos_eos[:max_text_len - 1] + [self.text_tokenizer.eos_token_id] sequence_ids.append(torch.cat([ torch.tensor([r2i_id]).to(device), # task token torch.tensor(text_ids_full_len).to(device), torch.tensor([soi_id]).to(device), image_ids[i], torch.tensor([eoi_id]).to(device), ], dim=0).unsqueeze(0)) end_header_id = int(self.sptids_dict['<|end_header_id|>']) end_header_pos = -1 for pos in range(len(text_ids_full_len) - 1, -1, -1): if text_ids_full_len[pos] == end_header_id: end_header_pos = pos break prompt_mask = torch.zeros(sequence_ids[i].size(1)).to(device) prompt_mask[0] = 1 # task_id if end_header_pos != -1: prompt_mask[1:end_header_pos+2] = 1 else: prompt_mask[1:len(text_ids_full_len)+1] = 1 prompt_mask[len(text_ids_full_len)+1] = 1 prompt_mask[len(text_ids_full_len)+2+len(image_ids[i])] = 1 prompt_masks.append(prompt_mask.unsqueeze(0)) return torch.cat(sequence_ids, dim=0), torch.cat(prompt_masks, dim=0), torch.cat(sequence_ids, dim=0) def mask_prompt(self): pass def __call__(self, input, task, padding=True, config=None): """ input (tuple) : data pairs contain text(str), image(tensor), or videos(tensor). task (str) : a flag indicates the current task. """ if task == "t2i": text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len) image_ids = input[1] # (B, #tokens) sequence_ids_with_masks = self.t2i_prompt(text_ids, image_ids, input[2]) elif task == "t2v": text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len) image_ids = input[1] # (B, #tokens) sequence_ids_with_masks = self.t2v_prompt(text_ids, image_ids, input[2]) elif task == "t2i_plus_lm": text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len) image_ids = input[1] # (B, #tokens) sequence_ids_with_masks = self.t2i_prompt(text_ids[:config.training.batch_size], image_ids, input[2]) sequence_ids_with_masks_lm = self.lm_prompt(text_ids[config.training.batch_size:], input[3]) return sequence_ids_with_masks, sequence_ids_with_masks_lm elif task == "t2i_gen": text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len) image_ids = input[1] # (B, #tokens) sequence_ids_with_masks = self.t2i_gen_prompt(text_ids, image_ids) elif task == "t2v_gen": text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len) image_ids = input[1] # (B, #tokens) sequence_ids_with_masks = self.t2v_gen_prompt(text_ids, image_ids) elif task == "lm": text_ids = self.text_tokenizer(input[0], truncation=True)['input_ids'] # (B, max_len) sequence_ids_with_masks = self.lm_prompt(text_ids, input[1]) elif task == "lm_chat": text_ids = self.text_tokenizer(input[0], truncation=True)['input_ids'] # (B, max_len) sequence_ids_with_masks = self.lm_chat_prompt(text_ids, input[1]) elif task == "mmu": image_ids = input[0] text_ids = self.text_tokenizer(input[1])['input_ids'] sequence_ids_with_masks = self.mmu_prompt(image_ids, text_ids) elif task == "r2i": image_ids = input[0] text_ids = self.text_tokenizer(input[1])['input_ids'] sequence_ids_with_masks = self.r2i_prompt(image_ids, text_ids) else: raise NotImplementedError return sequence_ids_with_masks if __name__ == '__main__': pass