File size: 5,028 Bytes
4611956
 
833d8e7
4611956
833d8e7
4611956
833d8e7
4611956
833d8e7
4611956
 
 
833d8e7
 
 
4611956
 
 
833d8e7
 
 
4611956
 
 
833d8e7
4611956
833d8e7
 
 
 
4611956
 
 
833d8e7
 
 
4611956
 
 
 
 
833d8e7
4611956
 
 
833d8e7
4611956
833d8e7
 
 
 
4611956
 
 
833d8e7
 
4611956
 
 
 
 
 
833d8e7
 
 
 
 
4611956
 
 
833d8e7
 
 
 
 
 
 
4611956
833d8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4611956
833d8e7
 
 
 
 
 
4611956
 
833d8e7
 
4611956
833d8e7
 
4611956
 
 
833d8e7
 
 
4611956
 
 
833d8e7
 
 
4611956
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import time
import cv2
import av
import numpy as np
import streamlit as st
from deepface import DeepFace
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration

# ---------------------------------------------
# 🌐 Streamlit Page Config
# ---------------------------------------------
st.set_page_config(page_title="AI Facial Interview Monitor", layout="wide")
st.title(":blue[MOCKVIEWER - Face Monitoring System]")

# ---------------------------------------------
# πŸ“¦ Load Haar Cascade Models
# ---------------------------------------------
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml")

# ---------------------------------------------
# πŸ–ΌοΈ Upload Reference Image
# ---------------------------------------------
uploaded_image = st.file_uploader("Upload your reference face image", type=["jpg", "jpeg", "png"])
user_ref_img = None
if uploaded_image:
    user_ref_img = cv2.imdecode(np.frombuffer(uploaded_image.read(), np.uint8), cv2.IMREAD_COLOR)
    st.image(user_ref_img, caption="Reference Image", use_column_width=True)

# ---------------------------------------------
# ⏱️ Global State Variables
# ---------------------------------------------
face_detected_time = time.time()
last_verified_time = 0

# ---------------------------------------------
# βš™οΈ Configurations
# ---------------------------------------------
FACE_TIMEOUT = 60         # seconds of face absence before cancelling
VERIFY_INTERVAL = 30      # seconds between identity checks

# ---------------------------------------------
# πŸ‘οΈ Confidence Heuristic
# ---------------------------------------------
def is_confident_pose(face_roi):
    """Check if eyes are visible and head is upright."""
    gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
    eyes = eye_cascade.detectMultiScale(gray, 1.1, 4)
    return len(eyes) >= 1

# ---------------------------------------------
# 🧬 Identity Verification
# ---------------------------------------------
def match_identity(live_face, ref_img):
    try:
        result = DeepFace.verify(
            live_face, ref_img,
            enforce_detection=False,
            model_name='Facenet',
            detector_backend='opencv'
        )
        return result["verified"]
    except Exception as e:
        print("Verification error:", e)
        return False

# ---------------------------------------------
# πŸ“Ή Streamlit Webcam Video Processor
# ---------------------------------------------
class VideoProcessor:
    def __init__(self):
        self.last_check = time.time()
        self.last_verified = time.time()
        self.face_missing = False

    def recv(self, frame):
        global face_detected_time, last_verified_time, user_ref_img
        img = frame.to_ndarray(format="bgr24")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        faces = face_cascade.detectMultiScale(gray, 1.1, 4)

        if len(faces) == 0:
            if time.time() - face_detected_time > FACE_TIMEOUT:
                cv2.putText(img, "❌ Interview Cancelled: Face not visible!", (30, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
            else:
                cv2.putText(img, "⚠️ Face not visible. You have 60 seconds.", (30, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
        else:
            face_detected_time = time.time()
            for (x, y, w, h) in faces:
                face_roi = img[y:y+h, x:x+w]

                # Eye/Posture Check
                confident = is_confident_pose(face_roi)
                status = "βœ… Confident Pose" if confident else "⚠️ Look Straight!"
                color = (0, 255, 0) if confident else (0, 255, 255)
                cv2.putText(img, status, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
                cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)

                # Identity Verification
                if uploaded_image and (time.time() - last_verified_time > VERIFY_INTERVAL):
                    matched = match_identity(face_roi, user_ref_img)
                    last_verified_time = time.time()
                    if matched:
                        cv2.putText(img, "βœ… Identity Verified", (x, y + h + 30),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
                    else:
                        cv2.putText(img, "❌ Identity mismatch!", (x, y + h + 30),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)

        return av.VideoFrame.from_ndarray(img, format="bgr24")

# ---------------------------------------------
# πŸ”Œ Activate Webcam Stream
# ---------------------------------------------
webrtc_streamer(
    key="monitor",
    video_processor_factory=VideoProcessor,
    mode=WebRtcMode.RECVONLY,
    rtc_configuration=RTCConfiguration(iceServers=[])
)