File size: 10,413 Bytes
a71a582
 
 
 
 
 
 
 
 
 
441de12
 
a71a582
 
 
796529d
 
 
 
 
 
 
 
 
 
 
a71a582
 
796529d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a548a6
796529d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a548a6
796529d
 
 
 
 
 
 
 
 
 
 
 
 
a71a582
796529d
a71a582
796529d
 
 
 
 
a71a582
796529d
a71a582
796529d
 
 
a71a582
796529d
 
 
 
4a548a6
 
 
796529d
 
4a548a6
 
 
796529d
 
 
 
a71a582
796529d
 
4a548a6
796529d
 
 
 
 
 
 
 
 
4a548a6
796529d
 
4a548a6
796529d
4a548a6
796529d
4a548a6
 
 
 
796529d
 
 
a71a582
796529d
 
4a548a6
796529d
 
 
 
 
 
 
 
 
4a548a6
796529d
 
4a548a6
 
 
796529d
 
 
 
 
 
 
a71a582
796529d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a582
796529d
 
 
 
 
3c5b8a2
 
a71a582
3c5b8a2
796529d
 
3c5b8a2
796529d
4a548a6
796529d
4ee714e
3c5b8a2
 
4ee714e
 
3c5b8a2
796529d
3c5b8a2
a71a582
796529d
3c5b8a2
 
 
 
 
796529d
 
3c5b8a2
 
 
 
 
796529d
 
3c5b8a2
796529d
 
4a548a6
 
 
 
796529d
 
 
 
3c5b8a2
796529d
4a548a6
796529d
 
3c5b8a2
796529d
 
 
3c5b8a2
796529d
3c5b8a2
a71a582
796529d
3c5b8a2
 
 
 
 
796529d
 
3c5b8a2
 
 
 
 
796529d
 
3c5b8a2
796529d
 
 
4a548a6
3c5b8a2
 
796529d
 
 
 
 
 
 
b37c413
796529d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from models import SynthesizerTrn
from tqdm import tqdm
from utils import _L, MODEL_DIR
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
    level=logging.INFO,
    format="| %(name)s | %(levelname)s | %(message)s",
)

logger = logging.getLogger(__name__)
net_g = None
debug = False


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2

        word2ph[0] += 1

    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph
    assert bert.shape[-1] == len(phone)
    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, phone, tone, language


def TTS_infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio


def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    with torch.no_grad():
        audio = TTS_infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise_scale,
            noise_scale_w=noise_scale_w,
            length_scale=length_scale,
            sid=speaker,
        )

    return (hps.data.sampling_rate, audio)


def text_splitter(text: str):
    punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
    # 使用正则表达式根据标点符号分割文本, 并忽略重叠的分隔符
    sentences = re.split(punctuation, text.strip())
    # 过滤掉空字符串
    return [sentence.strip() for sentence in sentences if sentence.strip()]


def concatenate_audios(audio_samples, sample_rate=44100):
    half_second_silence = np.zeros(int(sample_rate / 2))
    # 初始化最终的音频数组
    final_audio = audio_samples[0]
    # 遍历音频样本列表, 并将它们连接起来, 每个样本之间插入半秒钟的静音
    for sample in audio_samples[1:]:
        final_audio = np.concatenate((final_audio, half_second_silence, sample))

    print("音频片段连接完成!")
    return (sample_rate, final_audio)


def read_text(file_path: str):
    with open(file_path, "r", encoding="utf-8") as file:
        content = file.read()
        return content


def infer_upl(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    status = "Success"
    audio = content = None
    try:
        content = read_text(text)
        sentences = text_splitter(content)
        audios = []
        for sentence in tqdm(sentences, desc="TTS 推理中..."):
            with torch.no_grad():
                audios.append(
                    TTS_infer(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        sid=speaker,
                    )
                )

        audio = concatenate_audios(audios, hps.data.sampling_rate)

    except Exception as e:
        status = f"{e}"

    return status, audio, content


def infer_txt(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    status = "Success"
    audio = None
    try:
        sentences = text_splitter(content)
        audios = []
        for sentence in tqdm(sentences, desc="TTS 推理中..."):
            with torch.no_grad():
                audios.append(
                    TTS_infer(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        sid=speaker,
                    )
                )

        audio = concatenate_audios(audios, hps.data.sampling_rate)

    except Exception as e:
        status = f"{e}"

    return status, audio


if __name__ == "__main__":
    if debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)

    hps = utils.get_hparams_from_dir(MODEL_DIR)
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    net_g.eval()
    utils.load_checkpoint(f"{MODEL_DIR}/G_78000.pth", net_g, None, skip_optimizer=True)
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    random.shuffle(speakers)
    with gr.Blocks() as app:
        gr.Markdown(
            _L(
                """
欢迎使用此创空间,此创空间基于 <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a> 开源项目制作,移至最底端有原理浅讲。使用此创空间必须遵守当地相关法律法规,禁止用其从事任何违法犯罪活动。"""
            )
        )

        with gr.Tab(_L("输入模式")):
            gr.Interface(
                fn=infer_txt,  # 使用 text_to_speech 函数
                inputs=[
                    gr.TextArea(
                        label=_L("请输入简体中文文案"),
                        placeholder=_L("首次推理需耗时下载模型,还请耐心等待。"),
                        show_copy_button=True,
                    ),
                    gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
                    gr.Slider(
                        minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
                    ),  # SDP/DP混合比
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.6,
                        step=0.1,
                        label=_L("感情调节"),
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.8,
                        step=0.1,
                        label=_L("音素长度"),
                    ),
                    gr.Slider(
                        minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
                    ),
                ],
                outputs=[
                    gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                    gr.Audio(label=_L("输出音频")),
                ],
                flagging_mode="never",
                concurrency_limit=4,
            )

        with gr.Tab(_L("上传模式")):
            gr.Interface(
                fn=infer_upl,  # 使用 text_to_speech 函数
                inputs=[
                    gr.components.File(
                        label=_L("请上传简体中文 TXT 文案"),
                        type="filepath",
                        file_types=[".txt"],
                    ),
                    gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
                    gr.Slider(
                        minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
                    ),  # SDP/DP混合比
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.6,
                        step=0.1,
                        label=_L("感情调节"),
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.8,
                        step=0.1,
                        label=_L("音素长度"),
                    ),
                    gr.Slider(
                        minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
                    ),
                ],
                outputs=[
                    gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                    gr.Audio(label=_L("输出音频")),
                    gr.TextArea(label=_L("文案提取结果"), show_copy_button=True),
                ],
                flagging_mode="never",
                concurrency_limit=4,
            )

        gr.HTML(
            """
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;">
</iframe>
"""
        )

    app.launch()