Spaces:
Running
Running
File size: 10,413 Bytes
a71a582 441de12 a71a582 796529d a71a582 796529d 4a548a6 796529d 4a548a6 796529d a71a582 796529d a71a582 796529d a71a582 796529d a71a582 796529d a71a582 796529d 4a548a6 796529d 4a548a6 796529d a71a582 796529d 4a548a6 796529d 4a548a6 796529d 4a548a6 796529d 4a548a6 796529d 4a548a6 796529d a71a582 796529d 4a548a6 796529d 4a548a6 796529d 4a548a6 796529d a71a582 796529d a71a582 796529d 3c5b8a2 a71a582 3c5b8a2 796529d 3c5b8a2 796529d 4a548a6 796529d 4ee714e 3c5b8a2 4ee714e 3c5b8a2 796529d 3c5b8a2 a71a582 796529d 3c5b8a2 796529d 3c5b8a2 796529d 3c5b8a2 796529d 4a548a6 796529d 3c5b8a2 796529d 4a548a6 796529d 3c5b8a2 796529d 3c5b8a2 796529d 3c5b8a2 a71a582 796529d 3c5b8a2 796529d 3c5b8a2 796529d 3c5b8a2 796529d 4a548a6 3c5b8a2 796529d b37c413 796529d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from models import SynthesizerTrn
from tqdm import tqdm
from utils import _L, MODEL_DIR
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO,
format="| %(name)s | %(levelname)s | %(message)s",
)
logger = logging.getLogger(__name__)
net_g = None
debug = False
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def TTS_infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = TTS_infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
return (hps.data.sampling_rate, audio)
def text_splitter(text: str):
punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
# 使用正则表达式根据标点符号分割文本, 并忽略重叠的分隔符
sentences = re.split(punctuation, text.strip())
# 过滤掉空字符串
return [sentence.strip() for sentence in sentences if sentence.strip()]
def concatenate_audios(audio_samples, sample_rate=44100):
half_second_silence = np.zeros(int(sample_rate / 2))
# 初始化最终的音频数组
final_audio = audio_samples[0]
# 遍历音频样本列表, 并将它们连接起来, 每个样本之间插入半秒钟的静音
for sample in audio_samples[1:]:
final_audio = np.concatenate((final_audio, half_second_silence, sample))
print("音频片段连接完成!")
return (sample_rate, final_audio)
def read_text(file_path: str):
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
def infer_upl(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
status = "Success"
audio = content = None
try:
content = read_text(text)
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS 推理中..."):
with torch.no_grad():
audios.append(
TTS_infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
audio = concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
status = f"{e}"
return status, audio, content
def infer_txt(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
status = "Success"
audio = None
try:
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS 推理中..."):
with torch.no_grad():
audios.append(
TTS_infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
audio = concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
status = f"{e}"
return status, audio
if __name__ == "__main__":
if debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_dir(MODEL_DIR)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
net_g.eval()
utils.load_checkpoint(f"{MODEL_DIR}/G_78000.pth", net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
random.shuffle(speakers)
with gr.Blocks() as app:
gr.Markdown(
_L(
"""
欢迎使用此创空间,此创空间基于 <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a> 开源项目制作,移至最底端有原理浅讲。使用此创空间必须遵守当地相关法律法规,禁止用其从事任何违法犯罪活动。"""
)
)
with gr.Tab(_L("输入模式")):
gr.Interface(
fn=infer_txt, # 使用 text_to_speech 函数
inputs=[
gr.TextArea(
label=_L("请输入简体中文文案"),
placeholder=_L("首次推理需耗时下载模型,还请耐心等待。"),
show_copy_button=True,
),
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
), # SDP/DP混合比
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label=_L("感情调节"),
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label=_L("音素长度"),
),
gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Audio(label=_L("输出音频")),
],
flagging_mode="never",
concurrency_limit=4,
)
with gr.Tab(_L("上传模式")):
gr.Interface(
fn=infer_upl, # 使用 text_to_speech 函数
inputs=[
gr.components.File(
label=_L("请上传简体中文 TXT 文案"),
type="filepath",
file_types=[".txt"],
),
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
), # SDP/DP混合比
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label=_L("感情调节"),
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label=_L("音素长度"),
),
gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Audio(label=_L("输出音频")),
gr.TextArea(label=_L("文案提取结果"), show_copy_button=True),
],
flagging_mode="never",
concurrency_limit=4,
)
gr.HTML(
"""
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;">
</iframe>
"""
)
app.launch()
|