import torch import modelscope import huggingface_hub import gradio as gr from threading import Thread from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from utils import EN_US ZH2EN = { "有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试": "If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment", "⚙️ 参数设置": "⚙️ Parameters", "系统提示词": "System prompt", "最大 token 数": "Max new tokens", "温度参数": "Temperature", "Top-K 采样": "Top K sampling", "Top-P 采样": "Top P sampling", "重复性惩罚": "Repetition penalty", } def _L(zh_txt: str): return ZH2EN[zh_txt] if EN_US else zh_txt MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 16000 DESCRIPTION = ( f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" if EN_US else f"当前仅提供 {MODEL_NAME} 模型的 ModelScope 版部署实例,有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试" ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device == torch.device("cuda"): MODEL_DIR = ( huggingface_hub.snapshot_download(MODEL_ID, cache_dir="./__pycache__") if EN_US else modelscope.snapshot_download(MODEL_ID, cache_dir="./__pycache__") ) tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, device_map="auto") def predict(msg, history, prompt, temper, max_tokens, top_k, repeat_penalty, top_p): # Format history with a given chat template stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] instruction = "<|im_start|>system\n" + prompt + "\n<|im_end|>\n" for user, assistant in history: instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n" instruction += f"<|im_start|>user\n{msg}\n<|im_end|>\n<|im_start|>assistant\n" try: if device == torch.device("cpu"): raise EnvironmentError( _L("有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试") ) streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True, ) enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] attention_mask = attention_mask[:, -CONTEXT_LENGTH:] generate_kwargs = dict( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), streamer=streamer, do_sample=True, temperature=temper, max_new_tokens=max_tokens, top_k=top_k, repetition_penalty=repeat_penalty, top_p=top_p, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() except Exception as e: streamer = f"{e}" outputs = [] for new_token in streamer: outputs.append(new_token) if new_token in stop_tokens: break yield "".join(outputs) def DeepSeek_R1_Qwen_7B(): with gr.Accordion(label=_L("⚙️ 参数设置"), open=False) as ds_acc: prompt = gr.Textbox( "You are a useful assistant. first recognize user request and then reply carfuly and thinking", label=_L("系统提示词"), ) temper = gr.Slider(0, 1, 0.6, label=_L("温度参数")) maxtoken = gr.Slider(0, 32000, 10000, label=_L("最大 token 数")) topk = gr.Slider(1, 80, 40, label=_L("Top-K 采样")) repet = gr.Slider(0, 2, 1.1, label=_L("重复性惩罚")) topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样")) return gr.ChatInterface( predict, description=DESCRIPTION, additional_inputs_accordion=ds_acc, additional_inputs=[prompt, temper, maxtoken, topk, repet, topp], ).queue()