Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import requests | |
| import tensorflow as tf | |
| import keras_ocr | |
| import cv2 | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| from datetime import datetime | |
| import scipy.ndimage.interpolation as inter | |
| import easyocr | |
| from PIL import Image | |
| from paddleocr import PaddleOCR | |
| import socket | |
| from send_email_user import send_user_email | |
| from huggingface_hub import HfApi | |
| # api = HfApi() | |
| # api.upload_folder( | |
| # folder_path="/media/pragnakalpl20/Projects/Pragnakalp_projects/gradio_demo/images", | |
| # path_in_repo="my-dataset/images", | |
| # repo_id="pragnakalp/OCR-image-to-text", | |
| # repo_type="dataset", | |
| # ignore_patterns="**/logs/*.txt", | |
| # ) | |
| # if not os.path.isdir('images'): | |
| # os.mkdir('images') | |
| # print("create folder--->") | |
| print(os.getcwd()) | |
| def get_device_ip_address(): | |
| if os.name == "nt": | |
| result = "Running on Windows" | |
| hostname = socket.gethostname() | |
| result += "\nHostname: " + hostname | |
| host = socket.gethostbyname(hostname) | |
| result += "\nHost-IP-Address:" + host | |
| return result | |
| elif os.name == "posix": | |
| gw = os.popen("ip -4 route show default").read().split() | |
| s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
| s.connect((gw[2], 0)) | |
| ipaddr = s.getsockname()[0] | |
| gateway = gw[2] | |
| host = socket.gethostname() | |
| result = "\nIP address:\t\t" + ipaddr + "\r\nHost:\t\t" + host | |
| return result | |
| else: | |
| result = os.name + " not supported yet." | |
| return result | |
| """ | |
| Paddle OCR | |
| """ | |
| def ocr_with_paddle(img): | |
| finaltext = '' | |
| ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
| # img_path = 'exp.jpeg' | |
| result = ocr.ocr(img) | |
| for i in range(len(result[0])): | |
| text = result[0][i][1][0] | |
| finaltext += ' '+ text | |
| return finaltext | |
| """ | |
| Keras OCR | |
| """ | |
| def ocr_with_keras(img): | |
| output_text = '' | |
| pipeline=keras_ocr.pipeline.Pipeline() | |
| images=[keras_ocr.tools.read(img)] | |
| predictions=pipeline.recognize(images) | |
| first=predictions[0] | |
| for text,box in first: | |
| output_text += ' '+ text | |
| return output_text | |
| """ | |
| easy OCR | |
| """ | |
| # gray scale image | |
| def get_grayscale(image): | |
| return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| # Thresholding or Binarization | |
| def thresholding(src): | |
| return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] | |
| def ocr_with_easy(img): | |
| gray_scale_image=get_grayscale(img) | |
| thresholding(gray_scale_image) | |
| cv2.imwrite('image.png',gray_scale_image) | |
| reader = easyocr.Reader(['th','en']) | |
| bounds = reader.readtext('image.png',paragraph="False",detail = 0) | |
| bounds = ''.join(bounds) | |
| return bounds | |
| """ | |
| Generate OCR | |
| """ | |
| def generate_ocr(Method,img): | |
| try: | |
| text_output = '' | |
| url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_image_to_text' | |
| myobj = {'Deep': 'Mistry'} | |
| x = requests.post(url, data = myobj) | |
| print("Method___________________",Method) | |
| if Method == 'EasyOCR': | |
| text_output = ocr_withreadme.txt_easy(img) | |
| if Method == 'KerasOCR': | |
| text_output = ocr_with_keras(img) | |
| if Method == 'PaddleOCR': | |
| text_output = ocr_with_paddle(img) | |
| # save_details(Method,text_output,img) | |
| return text_output | |
| # hostname = socket.gethostname() | |
| # IPAddr = socket.gethostbyname(hostname) | |
| # print(hostname) | |
| # print("\nHost-IP-Address:" + IPAddr) | |
| except Exception as e: | |
| print("Error in ocr generation ==>",e) | |
| text_output = "Something went wrong" | |
| return text_output | |
| """ | |
| Save generated details | |
| """ | |
| def save_details(Method,text_output,img): | |
| method = [] | |
| img_path = [] | |
| text = [] | |
| input_img = '' | |
| hostname = '' | |
| picture_path = "image.jpg" | |
| curr_datetime = datetime.now().strftime('%Y-%m-%d %H-%M-%S') | |
| if text_output: | |
| splitted_path = os.path.splitext(picture_path) | |
| modified_picture_path = splitted_path[0] + curr_datetime + splitted_path[1] | |
| cv2.imwrite("myimage.jpg", img) | |
| with open('savedata.txt', 'w') as f: | |
| print("write test") | |
| f.write("testdata") | |
| print("write Successfully") | |
| # img = Image.open(r"/home/user/app/") | |
| # img.save(modified_picture_path) | |
| input_img = modified_picture_path | |
| try: | |
| df = pd.read_csv("AllDetails.csv") | |
| df2 = {'method': Method, 'input_img': input_img, 'generated_text': text_output} | |
| df = df.append(df2, ignore_index = True) | |
| df.to_csv("AllDetails.csv", index=False) | |
| except: | |
| method.append(Method) | |
| img_path.append(input_img) | |
| text.append(text_output) | |
| dict = {'method': method, 'input_img': img_path, 'generated_text': text} | |
| df = pd.DataFrame(dict,index=None) | |
| df.to_csv("AllDetails.csv") | |
| hostname = get_device_ip_address() | |
| return send_user_email(input_img,hostname,text_output,Method) | |
| # return hostname | |
| """ | |
| Create user interface for OCR demo | |
| """ | |
| image = gr.Image(shape=(224, 224),elem_id="img_div") | |
| method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],elem_id="radio_div") | |
| output = gr.Textbox(label="Output") | |
| demo = gr.Interface( | |
| generate_ocr, | |
| [method,image], | |
| output, | |
| title="Optical Character Recognition", | |
| description="Try OCR with different methods", | |
| theme="darkpeach", | |
| css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
| allow_flagging = 'manual' | |
| ) | |
| demo.launch(enable_queue = False) |