File size: 28,738 Bytes
a57357b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python
# coding=utf-8

import os
import sys
import json
import argparse
import logging
from datetime import datetime

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    TrainerCallback,
    set_seed,
    BitsAndBytesConfig
)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

# Check for BitsAndBytes
try:
    from transformers import BitsAndBytesConfig
    bitsandbytes_available = True
except ImportError:
    bitsandbytes_available = False
    logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")

# Check for PEFT
try:
    from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
    peft_available = True
except ImportError:
    peft_available = False
    logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")

# Import Unsloth
try:
    from unsloth import FastLanguageModel
    from unsloth.chat_templates import get_chat_template
    unsloth_available = True
except ImportError:
    unsloth_available = False
    logger.warning("Unsloth not available. Please install with: pip install unsloth")

def load_env_variables():
    """Load environment variables from system, .env file, or Hugging Face Space variables."""
    # Check if we're running in a Hugging Face Space
    if os.environ.get("SPACE_ID"):
        logging.info("Running in Hugging Face Space")
        
        # Log the presence of variables (without revealing values)
        logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
        logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
        
        # If username is not set, try to extract from SPACE_ID
        if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
            username = os.environ.get("SPACE_ID").split("/")[0]
            os.environ["HF_USERNAME"] = username
            logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
    else:
        # Try to load from .env file if not in a Space
        try:
            from dotenv import load_dotenv
            # Updated path to .env file in the new directory structure
            env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
            if os.path.exists(env_path):
                load_dotenv(env_path)
                logging.info(f"Loaded environment variables from {env_path}")
                logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
                logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
                logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
            else:
                logging.warning(f"No .env file found at {env_path}")
        except ImportError:
            logging.warning("python-dotenv not installed, not loading from .env file")
    
    if not os.environ.get("HF_USERNAME"):
        logger.warning("HF_USERNAME is not set. Using default username.")
    
    if not os.environ.get("HF_SPACE_NAME"):
        logger.warning("HF_SPACE_NAME is not set. Using default space name.")
        
    # Set HF_TOKEN for huggingface_hub
    if os.environ.get("HF_TOKEN"):
        os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")

def load_configs(base_path):
    """Load all configuration files."""
    configs = {}
    
    # List of config files to load
    config_files = [
        "transformers_config.json",
        "hardware_config.json",
        "dataset_config.json"
    ]
    
    for config_file in config_files:
        file_path = os.path.join(base_path, config_file)
        try:
            with open(file_path, "r") as f:
                config_name = config_file.replace("_config.json", "")
                configs[config_name] = json.load(f)
                logger.info(f"Loaded {config_name} configuration from {file_path}")
        except Exception as e:
            logger.error(f"Error loading {config_file}: {e}")
            raise
    
    return configs

def parse_args():
    parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
    parser.add_argument("--config_dir", type=str, default=".", help="Directory containing configuration files")
    return parser.parse_args()

def load_model_and_tokenizer(config):
    """Load model and tokenizer with proper error handling and optimizations."""
    try:
        if config.get("use_unsloth", False) and unsloth_available:
            logger.info("Using Unsloth optimizations")
            model, tokenizer = FastLanguageModel.from_pretrained(
                model_name=config.get("model_name"),
                max_seq_length=config.get("max_seq_length", 2048),
                dtype=None,  # Let Unsloth choose optimal dtype
                load_in_4bit=config.get("load_in_4bit", True),
                device_map="auto",
            )
            
            # Apply Unsloth's training optimizations with config parameters
            model = FastLanguageModel.get_peft_model(
                model,
                r=config.get("unsloth_r", 32),
                target_modules=config.get("unsloth_target_modules", 
                    ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]),
                lora_alpha=config.get("unsloth_alpha", 16),
                lora_dropout=config.get("unsloth_dropout", 0.05),
                bias="none",
                use_gradient_checkpointing=config.get("gradient_checkpointing", True),
                random_state=config.get("seed", 42),
            )
            logger.info("Unsloth optimizations applied successfully")
        else:
            if config.get("use_unsloth", False):
                logger.warning("Unsloth requested but not available. Falling back to standard training.")
            
            # Standard quantization setup
            quantization_config = None
            if config.get("load_in_4bit", False) and bitsandbytes_available:
                logger.info("Using 4-bit quantization")
                quantization_config = BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_quant_type="nf4",
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True
                )
            
            # Load model with standard settings
            model = AutoModelForCausalLM.from_pretrained(
                config.get("model_name"),
                quantization_config=quantization_config,
                device_map="auto",
                trust_remote_code=config.get("trust_remote_code", True),
                use_cache=not config.get("gradient_checkpointing", True)
            )
            
            # Load tokenizer
            tokenizer = AutoTokenizer.from_pretrained(
                config.get("model_name"),
                use_fast=config.get("use_fast_tokenizer", True),
                trust_remote_code=config.get("trust_remote_code", True)
            )
            
            # Enable gradient checkpointing if requested
            if config.get("gradient_checkpointing", True) and hasattr(model, "gradient_checkpointing_enable"):
                model.gradient_checkpointing_enable(use_reentrant=False)
                logger.info("Gradient checkpointing enabled")

        # Set up tokenizer settings
        if config.get("chat_template"):
            if unsloth_available and config.get("use_unsloth", False):
                chat_template = get_chat_template("phi")
                tokenizer.chat_template = chat_template
            else:
                tokenizer.chat_template = config.get("chat_template")
            logger.info(f"Set chat template to {config.get('chat_template')}")
        
        # Ensure proper token settings
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id
            logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
        
        return model, tokenizer
    
    except Exception as e:
        logger.error(f"Error in model/tokenizer loading: {str(e)}")
        raise

def load_dataset_with_mapping(dataset_config):
    """Load and prepare dataset with proper column mapping."""
    try:
        # Load dataset
        dataset = load_dataset(
            dataset_config["dataset"]["name"],
            split=dataset_config["dataset"]["split"]
        )
        logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
        
        # Apply column mapping if specified
        if "column_mapping" in dataset_config["dataset"]:
            mapping = dataset_config["dataset"]["column_mapping"]
            dataset = dataset.rename_columns({v: k for k, v in mapping.items()})
            logger.info(f"Applied column mapping: {mapping}")
        
        # Sort dataset if required
        if dataset_config["dataset"]["processing"]["sort_by_id"]:
            logger.info("Sorting dataset by ID to maintain paper chunk order")
            dataset = dataset.sort("id")
            
            # Log first few IDs to verify sorting
            sample_ids = [example["id"] for example in dataset.select(range(min(5, len(dataset))))]
            logger.info(f"First few IDs after sorting: {sample_ids}")
        
        return dataset
    
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        raise

def main():
    # Set up logging
    logger.info("Starting training process")
    
    # Parse arguments
    args = parse_args()
    
    # Load environment variables
    load_env_variables()
    
    # Load all configurations
    try:
        configs = load_configs(args.config_dir)
        logger.info("All configurations loaded successfully")
        
        # Extract specific configs
        model_config = configs["transformers"]
        hardware_config = configs["hardware"]
        dataset_config = configs["dataset"]
        
        # Apply hardware-specific settings
        per_device_batch_size = hardware_config["training_optimizations"]["per_device_batch_size"]
        gradient_accumulation = hardware_config["training_optimizations"]["gradient_accumulation_steps"]
        
        # Update model config with hardware settings
        model_config["training"].update({
            "per_device_train_batch_size": per_device_batch_size,
            "gradient_accumulation_steps": gradient_accumulation,
            "gradient_checkpointing": hardware_config["training_optimizations"]["memory_optimizations"]["use_gradient_checkpointing"]
        })
        
    except Exception as e:
        logger.error(f"Error loading configurations: {e}")
        return 1
    
    # Set random seed for reproducibility
    seed = model_config.get("seed", 42)
    set_seed(seed)
    logger.info(f"Set random seed to {seed}")
    
    # Check if we're running in a Hugging Face Space
    if os.environ.get("SPACE_ID") and not os.environ.get("HF_USERNAME"):
        # Extract username from SPACE_ID
        username = os.environ.get("SPACE_ID").split("/")[0]
        logger.info(f"Extracted username from SPACE_ID: {username}")
        
        # Set hub_model_id if not already set and push_to_hub is enabled
        if model_config.get("push_to_hub", False) and not model_config.get("hub_model_id"):
            model_name = model_config.get("model_name", "").split("/")[-1]
            model_config["hub_model_id"] = f"{username}/finetuned-{model_name}"
            logger.info(f"Set hub_model_id to {model_config['hub_model_id']}")
    
    # Load model and tokenizer
    logger.info(f"Loading model: {model_config.get('model_name')}")
    
    try:
        model, tokenizer = load_model_and_tokenizer(model_config)
        logger.info("Model and tokenizer loaded successfully")
        
        # Prepare model for k-bit training if using PEFT
        if model_config.get("use_peft", False) and peft_available:
            logger.info("Preparing model for parameter-efficient fine-tuning")
            try:
                model = prepare_model_for_kbit_training(model)
                
                # Get target modules
                target_modules = model_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
                
                # Create LoRA config
                lora_config = LoraConfig(
                    r=model_config.get("lora_r", 16),
                    lora_alpha=model_config.get("lora_alpha", 32),
                    lora_dropout=model_config.get("lora_dropout", 0.05),
                    bias="none",
                    task_type="CAUSAL_LM",
                    target_modules=target_modules
                )
                
                # Apply LoRA to model
                model = get_peft_model(model, lora_config)
                logger.info(f"Applied LoRA with r={model_config.get('lora_r', 16)}, alpha={model_config.get('lora_alpha', 32)}")
            except Exception as e:
                logger.error(f"Error setting up PEFT: {e}")
                return 1
        
        # Load dataset with proper mapping
        try:
            dataset = load_dataset_with_mapping(dataset_config)
            logger.info("Dataset loaded and prepared successfully")
        except Exception as e:
            logger.error(f"Error loading dataset: {e}")
            return 1
        
        # Simple data collator that processes each entry independently
        class SimpleDataCollator:
            def __init__(self, tokenizer):
                self.tokenizer = tokenizer
                self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
                self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
                self.prompt_counter = 0
                self.paper_counters = {}
                logger.info("SimpleDataCollator initialized - using phi-4 chat format")
                
            def format_phi_chat(self, messages):
                """Format messages according to phi-4's chat template."""
                formatted_chat = ""
                for message in messages:
                    # Extract role and content
                    if isinstance(message, dict):
                        role = message.get("role", "").lower()
                        content = message.get("content", "")
                    else:
                        role = getattr(message, "role", "").lower()
                        content = getattr(message, "content", "")
                    
                    # Format based on role
                    if role == "human" or role == "user":
                        formatted_chat += f"Human: {content}\n\n"
                    elif role == "assistant":
                        formatted_chat += f"Assistant: {content}\n\n"
                    elif role == "system":
                        # For system messages, we prepend them with a special format
                        formatted_chat = f"System: {content}\n\n" + formatted_chat
                    else:
                        logger.warning(f"Unknown role '{role}' - treating as system message")
                        formatted_chat += f"System: {content}\n\n"
                
                return formatted_chat.strip()
            
            def __call__(self, features):
                batch = {"input_ids": [], "attention_mask": [], "labels": []}
                
                for example in features:
                    try:
                        # Get ID and conversation fields
                        paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
                        conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
                        
                        if not conversation:
                            self.stats["skipped"] += 1
                            continue
                        
                        # Increment counters
                        self.prompt_counter += 1
                        if paper_id not in self.paper_counters:
                            self.paper_counters[paper_id] = 0
                        self.paper_counters[paper_id] += 1
                        
                        # Add metadata as system message
                        metadata = {
                            "role": "system",
                            "content": f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}"
                        }
                        
                        # Format the conversation using phi-4's chat template
                        formatted_content = self.format_phi_chat([metadata] + conversation)
                        
                        # Tokenize with the model's chat template
                        inputs = self.tokenizer(
                            formatted_content,
                            add_special_tokens=True,
                            truncation=True,
                            max_length=model_config.get("max_seq_length", 2048),
                            return_tensors=None,  # Return list instead of tensors
                        )
                        
                        input_ids = inputs["input_ids"]
                        attention_mask = inputs["attention_mask"]
                        
                        if len(input_ids) > 0:
                            # For causal language modeling, labels are the same as inputs
                            labels = input_ids.copy()
                            
                            batch["input_ids"].append(input_ids)
                            batch["attention_mask"].append(attention_mask)
                            batch["labels"].append(labels)
                            
                            self.stats["processed"] += 1
                            self.stats["total_tokens"] += len(input_ids)
                            
                            # Debug logging for first few examples
                            if self.stats["processed"] <= 3:
                                logger.info(f"Example {self.stats['processed']} format:")
                                logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
                                logger.info(f"Token count: {len(input_ids)}")
                                logger.info(f"Content preview:\n{formatted_content[:500]}...")
                        else:
                            self.stats["skipped"] += 1
                    
                    except Exception as e:
                        logger.warning(f"Error processing example: {str(e)[:100]}...")
                        self.stats["skipped"] += 1
                        continue
                
                # Handle empty batches
                if not batch["input_ids"]:
                    logger.warning("Empty batch, returning dummy tensors")
                    return {
                        "input_ids": torch.zeros((1, 1), dtype=torch.long),
                        "attention_mask": torch.zeros((1, 1), dtype=torch.long),
                        "labels": torch.zeros((1, 1), dtype=torch.long)
                    }
                
                # Pad the batch
                max_length = max(len(ids) for ids in batch["input_ids"])
                
                for i in range(len(batch["input_ids"])):
                    padding_length = max_length - len(batch["input_ids"][i])
                    if padding_length > 0:
                        batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
                        batch["attention_mask"][i].extend([0] * padding_length)
                        batch["labels"][i].extend([-100] * padding_length)  # Don't compute loss on padding
                
                # Convert to tensors
                batch = {k: torch.tensor(v) for k, v in batch.items()}
                
                # Log stats periodically
                if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
                    logger.info(f"Data collator stats: processed={self.stats['processed']}, "
                               f"skipped={self.stats['skipped']}, "
                               f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
                               f"unique_papers={len(self.paper_counters)}")
                
                return batch
        
        # Create data collator
        data_collator = SimpleDataCollator(tokenizer)
        
        # Simple logging callback
        class LoggingCallback(TrainerCallback):
            def __init__(self):
                self.last_log_time = datetime.now()
                self.training_start_time = datetime.now()
                
            def on_step_end(self, args, state, control, **kwargs):
                # Log every 50 steps or every 5 minutes, whichever comes first
                current_time = datetime.now()
                time_diff = (current_time - self.last_log_time).total_seconds()
                elapsed_time = (current_time - self.training_start_time).total_seconds() / 60  # in minutes
                
                if state.global_step % 50 == 0 or time_diff > 300:  # 300 seconds = 5 minutes
                    loss = state.log_history[-1]['loss'] if state.log_history else 'N/A'
                    lr = state.log_history[-1]['learning_rate'] if state.log_history else 'N/A'
                    
                    if isinstance(loss, float):
                        loss_str = f"{loss:.4f}"
                    else:
                        loss_str = str(loss)
                        
                    if isinstance(lr, float):
                        lr_str = f"{lr:.8f}"
                    else:
                        lr_str = str(lr)
                    
                    logger.info(f"Step: {state.global_step} | Loss: {loss_str} | LR: {lr_str} | Elapsed: {elapsed_time:.2f} min")
                    self.last_log_time = current_time
        
        # Set up training arguments
        logger.info("Setting up training arguments")
        training_args = TrainingArguments(
            output_dir=model_config.get("output_dir", "./results"),
            num_train_epochs=model_config.get("num_train_epochs", 3),
            per_device_train_batch_size=model_config.get("per_device_train_batch_size", 4),  # Use config value, can be > 1
            gradient_accumulation_steps=model_config.get("gradient_accumulation_steps", 8),
            learning_rate=model_config.get("learning_rate", 5e-5),
            weight_decay=model_config.get("weight_decay", 0.01),
            warmup_ratio=model_config.get("warmup_ratio", 0.1),
            lr_scheduler_type=model_config.get("lr_scheduler_type", "cosine"),
            logging_steps=model_config.get("logging_steps", 10),
            save_strategy=model_config.get("save_strategy", "steps"),  # Updated to use steps by default
            save_steps=model_config.get("save_steps", 100),  # Save every 100 steps by default
            save_total_limit=model_config.get("save_total_limit", 3),  # Keep last 3 checkpoints
            fp16=model_config.get("fp16", True),
            bf16=model_config.get("bf16", False),
            max_grad_norm=model_config.get("max_grad_norm", 1.0),
            push_to_hub=model_config.get("push_to_hub", False),
            hub_model_id=model_config.get("hub_model_id", None),
            hub_token=os.environ.get("HF_TOKEN", None),
            report_to="tensorboard",
            remove_unused_columns=False,  # Keep the conversations column
            gradient_checkpointing=model_config.get("gradient_checkpointing", True),  # Enable gradient checkpointing
            dataloader_pin_memory=False,  # Reduce memory usage
            optim=model_config.get("optim", "adamw_torch"),
            ddp_find_unused_parameters=False,  # Improve distributed training efficiency
            dataloader_drop_last=False,  # Process all examples
            dataloader_num_workers=0,  # Sequential data loading
        )
        
        # Create a sequential sampler to ensure dataset is processed in order
        logger.info("Creating sequential sampler to maintain dataset order")
        
        # Create trainer with callback
        logger.info("Creating trainer")
        
        # Check if we should resume from checkpoint
        resume_from_checkpoint = False
        output_dir = model_config.get("output_dir", "./results")
        if os.path.exists(output_dir):
            checkpoints = [folder for folder in os.listdir(output_dir) if folder.startswith("checkpoint-")]
            if checkpoints:
                latest_checkpoint = max(checkpoints, key=lambda x: int(x.split("-")[1]))
                resume_from_checkpoint = os.path.join(output_dir, latest_checkpoint)
                logger.info(f"Found checkpoint: {resume_from_checkpoint}. Training will resume from this point.")
        
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=dataset,
            data_collator=data_collator,
            callbacks=[LoggingCallback()]
        )
        
        # Override the default data loader to disable shuffling
        # This is necessary because TrainingArguments doesn't have a direct shuffle parameter
        def get_train_dataloader_no_shuffle():
            """Create a train DataLoader with shuffling disabled."""
            logger.info("Creating train dataloader with sequential sampler (no shuffling)")
            
            # Create a sequential sampler to ensure dataset is processed in order
            train_sampler = torch.utils.data.SequentialSampler(dataset)
            
            return torch.utils.data.DataLoader(
                dataset,
                batch_size=training_args.per_device_train_batch_size,
                sampler=train_sampler,  # Use sequential sampler instead of shuffle parameter
                collate_fn=data_collator,
                drop_last=False,
                num_workers=0,
                pin_memory=False
            )
        
        # Replace the default data loader with our non-shuffling version
        trainer.get_train_dataloader = get_train_dataloader_no_shuffle
        
        # Start training
        logger.info("Starting training")
        logger.info(f"Processing with batch size = {training_args.per_device_train_batch_size}, each entry processed independently")
        
        # Create a lock file to indicate training is in progress
        lock_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "TRAINING_IN_PROGRESS.lock")
        with open(lock_file, "w") as f:
            f.write(f"Training started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
            f.write(f"Expected completion: After {training_args.num_train_epochs} epochs\n")
            f.write("DO NOT UPDATE OR RESTART THIS SPACE UNTIL TRAINING COMPLETES\n")
        logger.info(f"Created lock file: {lock_file}")
        
        try:
            trainer.train(resume_from_checkpoint=resume_from_checkpoint)
            logger.info("Training completed successfully")
            
            # Save model
            if model_config.get("push_to_hub", False):
                logger.info(f"Pushing model to hub: {model_config.get('hub_model_id')}")
                trainer.push_to_hub()
                logger.info("Model pushed to hub successfully")
            else:
                logger.info(f"Saving model to {model_config.get('output_dir', './results')}")
                trainer.save_model()
                logger.info("Model saved successfully")
        except Exception as e:
            logger.error(f"Training failed with error: {str(e)}")
            raise
        finally:
            # Remove the lock file when training completes or fails
            if os.path.exists(lock_file):
                os.remove(lock_file)
                logger.info(f"Removed lock file: {lock_file}")
            
            return 0
    
    except Exception as e:
        logger.error(f"Error in main training loop: {str(e)}")
        return 1

if __name__ == "__main__":
    sys.exit(main())