Spaces:
Running
Running
File size: 5,549 Bytes
b4b3dd2 ab1497e b4b3dd2 ab1497e b4b3dd2 ab1497e b4b3dd2 ab1497e b4b3dd2 ab1497e b4b3dd2 ab1497e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import os
import json
import torch
import subprocess
from dotenv import load_dotenv
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler("app.log")
]
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Load config file
def load_config(config_path="transformers_config.json"):
try:
with open(config_path, 'r') as f:
config = json.load(f)
return config
except Exception as e:
logger.error(f"Error loading config: {str(e)}")
return {}
# Load configuration
config = load_config()
model_config = config.get("model_config", {})
# Model details from config
MODEL_NAME = model_config.get("model_name_or_path", "unsloth/DeepSeek-R1-Distill-Qwen-14B-bnb-4bit")
SPACE_NAME = os.getenv("HF_SPACE_NAME", "phi4training")
TRAINING_ACTIVE = os.path.exists("TRAINING_ACTIVE")
# Function to start the training process
def start_training():
try:
# Create TRAINING_ACTIVE file
with open("TRAINING_ACTIVE", "w") as f:
f.write("Training in progress")
# Run the training script in the background
subprocess.Popen(["python", "run_cloud_training.py"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
return "✅ Training started! Check status below for updates."
except Exception as e:
logger.error(f"Error starting training: {str(e)}")
return f"❌ Error starting training: {str(e)}"
# Create Gradio interface - training status only, no model outputs
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(f"# {SPACE_NAME}: Training Status Dashboard")
with gr.Row():
with gr.Column():
status = gr.Markdown(
f"""
## Research Training Phase Active
**Model**: {MODEL_NAME}
**Dataset**: phi4-cognitive-dataset
This is a multidisciplinary research training phase. The model is not available for interactive use.
### Training Configuration:
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)}
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)}
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)}
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)}
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)}
### Training Status:
{"🟢 Training in progress" if TRAINING_ACTIVE else "⚪ Training not currently active"}
⚠️ **NOTE**: This space does not provide model outputs during the research training phase.
"""
)
with gr.Row():
# Add buttons for starting training and refreshing status
start_btn = gr.Button("Start Training", variant="primary")
refresh_btn = gr.Button("Refresh Status")
# Output area for training start messages
training_output = gr.Markdown("")
def refresh_status():
# Re-check if training is active
training_active = os.path.exists("TRAINING_ACTIVE")
return f"""
## Research Training Phase Active
**Model**: {MODEL_NAME}
**Dataset**: phi4-cognitive-dataset
This is a multidisciplinary research training phase. The model is not available for interactive use.
### Training Configuration:
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)}
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)}
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)}
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)}
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)}
### Training Status:
{"🟢 Training in progress" if training_active else "⚪ Training not currently active"}
⚠️ **NOTE**: This space does not provide model outputs during the research training phase.
"""
# Connect button clicks to functions
start_btn.click(start_training, outputs=training_output)
refresh_btn.click(refresh_status, outputs=status)
gr.Markdown("""
### Research Training Information
This model is being fine-tuned on research-focused datasets and is not available for interactive querying.
Training logs are available to authorized researchers only.
### Instructions
1. Click "Start Training" to begin the fine-tuning process
2. Use "Refresh Status" to check training progress
3. Training logs are saved to the output directory
""")
# Launch the interface
if __name__ == "__main__":
# Start Gradio with minimal features
logger.info("Starting training status dashboard")
demo.launch(share=False) # Removed enable_queue parameter which is no longer supported in Gradio 5.x |