Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +75 -27
run_cloud_training.py
CHANGED
@@ -21,6 +21,14 @@ from transformers.data.data_collator import DataCollatorMixin
|
|
21 |
from peft import LoraConfig
|
22 |
from unsloth import FastLanguageModel
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Configure logging
|
25 |
logging.basicConfig(
|
26 |
level=logging.INFO,
|
@@ -80,7 +88,17 @@ def load_and_prepare_dataset(dataset_name, config):
|
|
80 |
logger.info(f"Shuffling dataset with seed {shuffle_seed}")
|
81 |
dataset = dataset.shuffle(seed=shuffle_seed)
|
82 |
|
|
|
83 |
logger.info(f"Dataset loaded with {len(dataset)} entries")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
return dataset
|
85 |
|
86 |
except Exception as e:
|
@@ -102,18 +120,47 @@ class PreTokenizedCollator(DataCollatorMixin):
|
|
102 |
self.pad_token_id = pad_token_id
|
103 |
|
104 |
def __call__(self, features):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# Determine max length in this batch
|
106 |
-
batch_max_len = max(len(x["input_ids"]) for x in
|
107 |
|
108 |
# Initialize batch tensors
|
109 |
batch = {
|
110 |
-
"input_ids": torch.ones((len(
|
111 |
-
"attention_mask": torch.zeros((len(
|
112 |
-
"labels": torch.ones((len(
|
113 |
}
|
114 |
|
115 |
# Fill batch tensors
|
116 |
-
for i, feature in enumerate(
|
117 |
input_ids = feature["input_ids"]
|
118 |
seq_len = len(input_ids)
|
119 |
|
@@ -274,36 +321,35 @@ def train(config_path, dataset_name, output_dir):
|
|
274 |
dtype = torch.float16 if hardware_config.get("fp16", True) else None
|
275 |
model, tokenizer = load_model_safely(model_name, max_seq_length, dtype)
|
276 |
|
277 |
-
#
|
278 |
logger.info("Applying LoRA to model")
|
279 |
-
try:
|
280 |
-
logger.info("Attempting to apply LoRA with unsloth API")
|
281 |
-
model = FastLanguageModel.get_peft_model(
|
282 |
-
model,
|
283 |
-
lora_config=lora_config_obj, # Pass lora_config directly instead of peft_config
|
284 |
-
tokenizer=tokenizer,
|
285 |
-
use_gradient_checkpointing=hardware_config.get("gradient_checkpointing", True)
|
286 |
-
)
|
287 |
-
except Exception as e:
|
288 |
-
logger.warning(f"Error applying LoRA with unsloth: {e}")
|
289 |
-
logger.info("Falling back to standard PEFT method")
|
290 |
-
|
291 |
-
# Try with standard PEFT approach if unsloth fails
|
292 |
-
from peft import get_peft_model
|
293 |
-
model = get_peft_model(model, lora_config_obj)
|
294 |
-
logger.info("Successfully applied LoRA with standard PEFT")
|
295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
# No need to format the dataset - it's already pre-tokenized
|
297 |
logger.info("Using pre-tokenized dataset - skipping tokenization step")
|
298 |
training_dataset = dataset
|
299 |
|
300 |
-
# Configure
|
301 |
-
reports = [
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
if os.getenv("WANDB_API_KEY"):
|
303 |
reports.append("wandb")
|
304 |
logger.info("Wandb API key found, enabling wandb reporting")
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
307 |
|
308 |
# Set up training arguments
|
309 |
training_args = TrainingArguments(
|
@@ -324,7 +370,9 @@ def train(config_path, dataset_name, output_dir):
|
|
324 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
325 |
report_to=reports,
|
326 |
logging_first_step=training_config.get("logging_first_step", True),
|
327 |
-
disable_tqdm=training_config.get("disable_tqdm", False)
|
|
|
|
|
328 |
)
|
329 |
|
330 |
# Create trainer with pre-tokenized collator
|
|
|
21 |
from peft import LoraConfig
|
22 |
from unsloth import FastLanguageModel
|
23 |
|
24 |
+
# Check if tensorboard is available
|
25 |
+
try:
|
26 |
+
import tensorboard
|
27 |
+
TENSORBOARD_AVAILABLE = True
|
28 |
+
except ImportError:
|
29 |
+
TENSORBOARD_AVAILABLE = False
|
30 |
+
print("Tensorboard not available. Will skip tensorboard logging.")
|
31 |
+
|
32 |
# Configure logging
|
33 |
logging.basicConfig(
|
34 |
level=logging.INFO,
|
|
|
88 |
logger.info(f"Shuffling dataset with seed {shuffle_seed}")
|
89 |
dataset = dataset.shuffle(seed=shuffle_seed)
|
90 |
|
91 |
+
# Print dataset structure for debugging
|
92 |
logger.info(f"Dataset loaded with {len(dataset)} entries")
|
93 |
+
logger.info(f"Dataset columns: {dataset.column_names}")
|
94 |
+
|
95 |
+
# Print a sample entry to understand structure
|
96 |
+
if len(dataset) > 0:
|
97 |
+
sample = dataset[0]
|
98 |
+
logger.info(f"Sample entry structure: {list(sample.keys())}")
|
99 |
+
if 'conversations' in sample:
|
100 |
+
logger.info(f"Sample conversations structure: {sample['conversations'][:1]}")
|
101 |
+
|
102 |
return dataset
|
103 |
|
104 |
except Exception as e:
|
|
|
120 |
self.pad_token_id = pad_token_id
|
121 |
|
122 |
def __call__(self, features):
|
123 |
+
# Print a sample feature to understand structure
|
124 |
+
if len(features) > 0:
|
125 |
+
logger.info(f"Sample feature keys: {list(features[0].keys())}")
|
126 |
+
|
127 |
+
# Extract input_ids from conversations if needed
|
128 |
+
processed_features = []
|
129 |
+
for feature in features:
|
130 |
+
# If input_ids is not directly available, try to extract from conversations
|
131 |
+
if 'input_ids' not in feature and 'conversations' in feature:
|
132 |
+
# Extract from conversations based on your dataset structure
|
133 |
+
# This is a placeholder - adjust based on actual structure
|
134 |
+
conversations = feature['conversations']
|
135 |
+
if isinstance(conversations, list) and len(conversations) > 0:
|
136 |
+
# Assuming input_ids might be in the content field
|
137 |
+
if 'content' in conversations[0]:
|
138 |
+
feature['input_ids'] = conversations[0]['content']
|
139 |
+
# Or it might be the conversation itself
|
140 |
+
elif isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
|
141 |
+
feature['input_ids'] = conversations[0]['input_ids']
|
142 |
+
|
143 |
+
processed_features.append(feature)
|
144 |
+
|
145 |
+
# If we still don't have input_ids, log an error
|
146 |
+
if len(processed_features) > 0 and 'input_ids' not in processed_features[0]:
|
147 |
+
logger.error(f"Could not find input_ids in features. Available keys: {list(processed_features[0].keys())}")
|
148 |
+
if 'conversations' in processed_features[0]:
|
149 |
+
logger.error(f"Conversations structure: {processed_features[0]['conversations'][:1]}")
|
150 |
+
raise ValueError("Could not find input_ids in dataset. Please check dataset structure.")
|
151 |
+
|
152 |
# Determine max length in this batch
|
153 |
+
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
|
154 |
|
155 |
# Initialize batch tensors
|
156 |
batch = {
|
157 |
+
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
|
158 |
+
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
|
159 |
+
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
|
160 |
}
|
161 |
|
162 |
# Fill batch tensors
|
163 |
+
for i, feature in enumerate(processed_features):
|
164 |
input_ids = feature["input_ids"]
|
165 |
seq_len = len(input_ids)
|
166 |
|
|
|
321 |
dtype = torch.float16 if hardware_config.get("fp16", True) else None
|
322 |
model, tokenizer = load_model_safely(model_name, max_seq_length, dtype)
|
323 |
|
324 |
+
# Try different approaches to apply LoRA
|
325 |
logger.info("Applying LoRA to model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
# Skip unsloth's method and go directly to PEFT
|
328 |
+
logger.info("Using standard PEFT method to apply LoRA")
|
329 |
+
from peft import get_peft_model
|
330 |
+
model = get_peft_model(model, lora_config_obj)
|
331 |
+
logger.info("Successfully applied LoRA with standard PEFT")
|
332 |
+
|
333 |
# No need to format the dataset - it's already pre-tokenized
|
334 |
logger.info("Using pre-tokenized dataset - skipping tokenization step")
|
335 |
training_dataset = dataset
|
336 |
|
337 |
+
# Configure reporting backends with fallbacks
|
338 |
+
reports = []
|
339 |
+
if TENSORBOARD_AVAILABLE:
|
340 |
+
reports.append("tensorboard")
|
341 |
+
logger.info("Tensorboard available and enabled for reporting")
|
342 |
+
else:
|
343 |
+
logger.warning("Tensorboard not available - metrics won't be logged to tensorboard")
|
344 |
+
|
345 |
if os.getenv("WANDB_API_KEY"):
|
346 |
reports.append("wandb")
|
347 |
logger.info("Wandb API key found, enabling wandb reporting")
|
348 |
+
|
349 |
+
# Default to "none" if no reporting backends are available
|
350 |
+
if not reports:
|
351 |
+
reports = ["none"]
|
352 |
+
logger.warning("No reporting backends available - training metrics won't be logged")
|
353 |
|
354 |
# Set up training arguments
|
355 |
training_args = TrainingArguments(
|
|
|
370 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
371 |
report_to=reports,
|
372 |
logging_first_step=training_config.get("logging_first_step", True),
|
373 |
+
disable_tqdm=training_config.get("disable_tqdm", False),
|
374 |
+
# Important: Don't remove columns that don't match model's forward method
|
375 |
+
remove_unused_columns=False
|
376 |
)
|
377 |
|
378 |
# Create trainer with pre-tokenized collator
|