Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +118 -80
run_cloud_training.py
CHANGED
@@ -24,6 +24,21 @@ from unsloth import FastLanguageModel
|
|
24 |
# Disable flash attention globally
|
25 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Check if tensorboard is available
|
28 |
try:
|
29 |
import tensorboard
|
@@ -76,20 +91,25 @@ def load_and_prepare_dataset(dataset_name, config):
|
|
76 |
# Get the dataset config
|
77 |
dataset_config = config.get("dataset_config", {})
|
78 |
sort_field = dataset_config.get("sort_by_field", "prompt_number")
|
79 |
-
sort_direction = dataset_config.get("sort_direction", "ascending")
|
80 |
|
81 |
-
#
|
82 |
-
logger.info(f"Sorting dataset by {sort_field} in
|
83 |
-
|
84 |
-
dataset = dataset.sort(sort_field)
|
85 |
-
else:
|
86 |
-
dataset = dataset.sort(sort_field, reverse=True)
|
87 |
|
88 |
-
#
|
89 |
-
if
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Print dataset structure for debugging
|
95 |
logger.info(f"Dataset loaded with {len(dataset)} entries")
|
@@ -263,62 +283,77 @@ def load_model_safely(model_name, max_seq_length, dtype=None):
|
|
263 |
"""
|
264 |
try:
|
265 |
logger.info(f"Attempting to load model with unsloth optimizations: {model_name}")
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
try:
|
268 |
-
|
269 |
-
|
270 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
271 |
model_name=model_name,
|
272 |
max_seq_length=max_seq_length,
|
273 |
dtype=dtype,
|
274 |
-
|
275 |
-
use_flash_attention=False, # Explicitly disable flash attention
|
276 |
-
attn_implementation="eager" # Use eager implementation instead
|
277 |
)
|
278 |
-
logger.info("Model loaded successfully with unsloth
|
279 |
return model, tokenizer
|
280 |
|
281 |
-
except
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
-
#
|
288 |
-
model
|
289 |
-
model_name
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
293 |
)
|
294 |
-
logger.info("Model loaded successfully with
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
return model, tokenizer
|
296 |
-
else:
|
297 |
-
# Re-raise if it's a different type error
|
298 |
-
raise
|
299 |
|
300 |
except Exception as e:
|
301 |
-
|
302 |
-
|
303 |
-
logger.info("Falling back to standard Hugging Face loading...")
|
304 |
-
|
305 |
-
# Disable flash attention in transformers config
|
306 |
-
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
307 |
-
if hasattr(config, "use_flash_attention"):
|
308 |
-
config.use_flash_attention = False
|
309 |
-
logger.info("Disabled flash attention in model config")
|
310 |
-
|
311 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
312 |
-
model = AutoModelForCausalLM.from_pretrained(
|
313 |
-
model_name,
|
314 |
-
config=config,
|
315 |
-
device_map="auto",
|
316 |
-
torch_dtype=dtype or torch.float16,
|
317 |
-
load_in_4bit=True,
|
318 |
-
attn_implementation="eager" # Use eager implementation instead of flash attention
|
319 |
-
)
|
320 |
-
logger.info("Model loaded successfully with standard HF loading and flash attention disabled")
|
321 |
-
return model, tokenizer
|
322 |
|
323 |
def train(config_path, dataset_name, output_dir):
|
324 |
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
|
@@ -423,31 +458,34 @@ def train(config_path, dataset_name, output_dir):
|
|
423 |
reports = ["none"]
|
424 |
logger.warning("No reporting backends available - training metrics won't be logged")
|
425 |
|
426 |
-
# Set up training arguments with
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
remove_unused_columns
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
451 |
|
452 |
# Create trainer with pre-tokenized collator
|
453 |
trainer = Trainer(
|
|
|
24 |
# Disable flash attention globally
|
25 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
26 |
|
27 |
+
# Try to install flash-attention (for systems that support it)
|
28 |
+
try:
|
29 |
+
import subprocess
|
30 |
+
import sys
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
logger.info("Attempting to install flash-attention...")
|
34 |
+
|
35 |
+
# Install flash-attention
|
36 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"])
|
37 |
+
logger.info("Successfully installed flash-attention")
|
38 |
+
except Exception as e:
|
39 |
+
logger.warning(f"Failed to install flash-attention: {e}")
|
40 |
+
logger.info("Continuing without flash-attention")
|
41 |
+
|
42 |
# Check if tensorboard is available
|
43 |
try:
|
44 |
import tensorboard
|
|
|
91 |
# Get the dataset config
|
92 |
dataset_config = config.get("dataset_config", {})
|
93 |
sort_field = dataset_config.get("sort_by_field", "prompt_number")
|
|
|
94 |
|
95 |
+
# Always sort in ascending order by prompt_number
|
96 |
+
logger.info(f"Sorting dataset by {sort_field} in ascending order")
|
97 |
+
dataset = dataset.sort(sort_field)
|
|
|
|
|
|
|
98 |
|
99 |
+
# Verify sorting
|
100 |
+
if len(dataset) > 1:
|
101 |
+
first_prompt = dataset[0].get(sort_field, None)
|
102 |
+
last_prompt = dataset[-1].get(sort_field, None)
|
103 |
+
logger.info(f"Dataset sorted: first {sort_field}={first_prompt}, last {sort_field}={last_prompt}")
|
104 |
+
|
105 |
+
# Additional verification of a few samples
|
106 |
+
sample_indices = [0, len(dataset)//2, len(dataset)-1]
|
107 |
+
sample_prompts = [dataset[i].get(sort_field, None) for i in sample_indices]
|
108 |
+
logger.info(f"Sample prompt numbers: {sample_prompts}")
|
109 |
+
|
110 |
+
# Verify order is ascending
|
111 |
+
if not all(sample_prompts[i] <= sample_prompts[i+1] for i in range(len(sample_prompts)-1)):
|
112 |
+
logger.warning("Dataset may not be properly sorted! Please check the ordering.")
|
113 |
|
114 |
# Print dataset structure for debugging
|
115 |
logger.info(f"Dataset loaded with {len(dataset)} entries")
|
|
|
283 |
"""
|
284 |
try:
|
285 |
logger.info(f"Attempting to load model with unsloth optimizations: {model_name}")
|
286 |
+
|
287 |
+
# Create BitsAndBytesConfig for 4-bit quantization
|
288 |
+
from transformers import BitsAndBytesConfig
|
289 |
+
bnb_config = BitsAndBytesConfig(
|
290 |
+
load_in_4bit=True,
|
291 |
+
bnb_4bit_compute_dtype=torch.float16,
|
292 |
+
bnb_4bit_quant_type="nf4",
|
293 |
+
bnb_4bit_use_double_quant=True
|
294 |
+
)
|
295 |
+
|
296 |
+
# First try loading with unsloth but without flash attention
|
297 |
try:
|
298 |
+
logger.info("Loading model with unsloth optimizations")
|
299 |
+
# Don't pass any flash attention parameters to unsloth
|
300 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
301 |
model_name=model_name,
|
302 |
max_seq_length=max_seq_length,
|
303 |
dtype=dtype,
|
304 |
+
quantization_config=bnb_config
|
|
|
|
|
305 |
)
|
306 |
+
logger.info("Model loaded successfully with unsloth")
|
307 |
return model, tokenizer
|
308 |
|
309 |
+
except Exception as e:
|
310 |
+
logger.warning(f"Unsloth loading failed: {e}")
|
311 |
+
logger.info("Falling back to standard Hugging Face loading...")
|
312 |
+
|
313 |
+
# We'll try two approaches with HF loading
|
314 |
+
|
315 |
+
# Approach 1: Using attn_implementation parameter (newer method)
|
316 |
+
try:
|
317 |
+
logger.info("Trying HF loading with attn_implementation parameter")
|
318 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
319 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
320 |
|
321 |
+
# The proper way to disable flash attention in newer transformers
|
322 |
+
model = AutoModelForCausalLM.from_pretrained(
|
323 |
+
model_name,
|
324 |
+
config=config,
|
325 |
+
device_map="auto",
|
326 |
+
torch_dtype=dtype or torch.float16,
|
327 |
+
quantization_config=bnb_config,
|
328 |
+
trust_remote_code=True,
|
329 |
+
attn_implementation="eager" # Use eager instead of flash_attention_2
|
330 |
)
|
331 |
+
logger.info("Model loaded successfully with HF using attn_implementation='eager'")
|
332 |
+
return model, tokenizer
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
logger.warning(f"HF loading with attn_implementation failed: {e}")
|
336 |
+
logger.info("Trying fallback method...")
|
337 |
+
|
338 |
+
# Approach 2: Complete fallback with minimal parameters
|
339 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
340 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
341 |
+
|
342 |
+
# Most basic loading without any attention parameters
|
343 |
+
model = AutoModelForCausalLM.from_pretrained(
|
344 |
+
model_name,
|
345 |
+
config=config,
|
346 |
+
device_map="auto",
|
347 |
+
torch_dtype=dtype or torch.float16,
|
348 |
+
quantization_config=bnb_config,
|
349 |
+
trust_remote_code=True
|
350 |
+
)
|
351 |
+
logger.info("Model loaded successfully with basic HF loading")
|
352 |
return model, tokenizer
|
|
|
|
|
|
|
353 |
|
354 |
except Exception as e:
|
355 |
+
logger.error(f"All model loading attempts failed: {e}")
|
356 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
def train(config_path, dataset_name, output_dir):
|
359 |
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
|
|
|
458 |
reports = ["none"]
|
459 |
logger.warning("No reporting backends available - training metrics won't be logged")
|
460 |
|
461 |
+
# Set up training arguments with correct parameters
|
462 |
+
# Extract only the valid parameters from hardware_config
|
463 |
+
training_args_dict = {
|
464 |
+
"output_dir": output_dir,
|
465 |
+
"num_train_epochs": training_config.get("num_train_epochs", 3),
|
466 |
+
"per_device_train_batch_size": training_config.get("per_device_train_batch_size", 2),
|
467 |
+
"gradient_accumulation_steps": training_config.get("gradient_accumulation_steps", 4),
|
468 |
+
"learning_rate": training_config.get("learning_rate", 2e-5),
|
469 |
+
"lr_scheduler_type": training_config.get("lr_scheduler_type", "cosine"),
|
470 |
+
"warmup_ratio": training_config.get("warmup_ratio", 0.03),
|
471 |
+
"weight_decay": training_config.get("weight_decay", 0.01),
|
472 |
+
"optim": training_config.get("optim", "adamw_torch"),
|
473 |
+
"logging_steps": training_config.get("logging_steps", 10),
|
474 |
+
"save_steps": training_config.get("save_steps", 200),
|
475 |
+
"save_total_limit": training_config.get("save_total_limit", 3),
|
476 |
+
"fp16": hardware_config.get("fp16", True),
|
477 |
+
"bf16": hardware_config.get("bf16", False),
|
478 |
+
"max_grad_norm": training_config.get("max_grad_norm", 0.3),
|
479 |
+
"report_to": reports,
|
480 |
+
"logging_first_step": training_config.get("logging_first_step", True),
|
481 |
+
"disable_tqdm": training_config.get("disable_tqdm", False),
|
482 |
+
"remove_unused_columns": False,
|
483 |
+
"shuffle_buffer_size": 1,
|
484 |
+
"seed": 42
|
485 |
+
}
|
486 |
+
|
487 |
+
# Create TrainingArguments with validated parameters
|
488 |
+
training_args = TrainingArguments(**training_args_dict)
|
489 |
|
490 |
# Create trainer with pre-tokenized collator
|
491 |
trainer = Trainer(
|