Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +306 -0
run_cloud_training.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-bnb-4bit using unsloth
|
6 |
+
RESEARCH TRAINING PHASE ONLY - No output generation
|
7 |
+
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import json
|
12 |
+
import logging
|
13 |
+
import argparse
|
14 |
+
import numpy as np
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
import torch
|
17 |
+
from datasets import load_dataset
|
18 |
+
import transformers
|
19 |
+
from transformers import AutoTokenizer, TrainingArguments, Trainer
|
20 |
+
from transformers.data.data_collator import DataCollatorMixin
|
21 |
+
from peft import LoraConfig
|
22 |
+
from unsloth import FastLanguageModel
|
23 |
+
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(
|
26 |
+
level=logging.INFO,
|
27 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
28 |
+
handlers=[
|
29 |
+
logging.StreamHandler(),
|
30 |
+
logging.FileHandler("training.log")
|
31 |
+
]
|
32 |
+
)
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
def load_config(config_path):
|
36 |
+
"""Load the transformers config from JSON file"""
|
37 |
+
logger.info(f"Loading config from {config_path}")
|
38 |
+
with open(config_path, 'r') as f:
|
39 |
+
config = json.load(f)
|
40 |
+
return config
|
41 |
+
|
42 |
+
def load_and_prepare_dataset(dataset_name, config):
|
43 |
+
"""
|
44 |
+
Load and prepare the dataset for fine-tuning.
|
45 |
+
Sort entries by prompt_number as required.
|
46 |
+
NO TOKENIZATION - DATASET IS ALREADY TOKENIZED
|
47 |
+
"""
|
48 |
+
logger.info(f"Loading dataset: {dataset_name}")
|
49 |
+
|
50 |
+
# Load dataset
|
51 |
+
dataset = load_dataset(dataset_name)
|
52 |
+
|
53 |
+
# Extract the split we want to use (usually 'train')
|
54 |
+
if 'train' in dataset:
|
55 |
+
dataset = dataset['train']
|
56 |
+
|
57 |
+
# Get the dataset config
|
58 |
+
dataset_config = config.get("dataset_config", {})
|
59 |
+
sort_field = dataset_config.get("sort_by_field", "prompt_number")
|
60 |
+
sort_direction = dataset_config.get("sort_direction", "ascending")
|
61 |
+
|
62 |
+
# Sort the dataset by prompt_number
|
63 |
+
logger.info(f"Sorting dataset by {sort_field} in {sort_direction} order")
|
64 |
+
if sort_direction == "ascending":
|
65 |
+
dataset = dataset.sort(sort_field)
|
66 |
+
else:
|
67 |
+
dataset = dataset.sort(sort_field, reverse=True)
|
68 |
+
|
69 |
+
# Add shuffle with fixed seed if specified
|
70 |
+
if "shuffle_seed" in dataset_config:
|
71 |
+
shuffle_seed = dataset_config.get("shuffle_seed")
|
72 |
+
logger.info(f"Shuffling dataset with seed {shuffle_seed}")
|
73 |
+
dataset = dataset.shuffle(seed=shuffle_seed)
|
74 |
+
|
75 |
+
logger.info(f"Dataset loaded with {len(dataset)} entries")
|
76 |
+
return dataset
|
77 |
+
|
78 |
+
# Data collator for pre-tokenized dataset
|
79 |
+
class PreTokenizedCollator(DataCollatorMixin):
|
80 |
+
"""
|
81 |
+
Data collator for pre-tokenized datasets.
|
82 |
+
Expects input_ids and labels already tokenized.
|
83 |
+
"""
|
84 |
+
def __init__(self, pad_token_id=0):
|
85 |
+
self.pad_token_id = pad_token_id
|
86 |
+
|
87 |
+
def __call__(self, features):
|
88 |
+
# Determine max length in this batch
|
89 |
+
batch_max_len = max(len(x["input_ids"]) for x in features)
|
90 |
+
|
91 |
+
# Initialize batch tensors
|
92 |
+
batch = {
|
93 |
+
"input_ids": torch.ones((len(features), batch_max_len), dtype=torch.long) * self.pad_token_id,
|
94 |
+
"attention_mask": torch.zeros((len(features), batch_max_len), dtype=torch.long),
|
95 |
+
"labels": torch.ones((len(features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
|
96 |
+
}
|
97 |
+
|
98 |
+
# Fill batch tensors
|
99 |
+
for i, feature in enumerate(features):
|
100 |
+
input_ids = feature["input_ids"]
|
101 |
+
seq_len = len(input_ids)
|
102 |
+
|
103 |
+
# Convert to tensor if it's a list
|
104 |
+
if isinstance(input_ids, list):
|
105 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
106 |
+
|
107 |
+
# Copy data to batch tensors
|
108 |
+
batch["input_ids"][i, :seq_len] = input_ids
|
109 |
+
batch["attention_mask"][i, :seq_len] = 1
|
110 |
+
|
111 |
+
# If there are labels, use them, otherwise use input_ids
|
112 |
+
if "labels" in feature:
|
113 |
+
labels = feature["labels"]
|
114 |
+
if isinstance(labels, list):
|
115 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
116 |
+
batch["labels"][i, :len(labels)] = labels
|
117 |
+
else:
|
118 |
+
batch["labels"][i, :seq_len] = input_ids
|
119 |
+
|
120 |
+
return batch
|
121 |
+
|
122 |
+
def create_training_marker(output_dir):
|
123 |
+
"""Create a marker file to indicate training is active"""
|
124 |
+
# Create in current directory for app.py to find
|
125 |
+
with open("TRAINING_ACTIVE", "w") as f:
|
126 |
+
f.write(f"Training active in {output_dir}")
|
127 |
+
|
128 |
+
# Also create in output directory
|
129 |
+
os.makedirs(output_dir, exist_ok=True)
|
130 |
+
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
|
131 |
+
f.write("This model is for research training only. No interactive outputs.")
|
132 |
+
|
133 |
+
def remove_training_marker():
|
134 |
+
"""Remove the training marker file"""
|
135 |
+
if os.path.exists("TRAINING_ACTIVE"):
|
136 |
+
os.remove("TRAINING_ACTIVE")
|
137 |
+
logger.info("Removed training active marker")
|
138 |
+
|
139 |
+
def train(config_path, dataset_name, output_dir):
|
140 |
+
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
|
141 |
+
# Load environment variables and configuration
|
142 |
+
load_dotenv()
|
143 |
+
config = load_config(config_path)
|
144 |
+
|
145 |
+
# Extract configs
|
146 |
+
model_config = config.get("model_config", {})
|
147 |
+
training_config = config.get("training_config", {})
|
148 |
+
hardware_config = config.get("hardware_config", {})
|
149 |
+
lora_config = config.get("lora_config", {})
|
150 |
+
dataset_config = config.get("dataset_config", {})
|
151 |
+
|
152 |
+
# Verify this is training phase only
|
153 |
+
training_phase_only = dataset_config.get("training_phase_only", True)
|
154 |
+
if not training_phase_only:
|
155 |
+
logger.warning("This script is meant for research training phase only")
|
156 |
+
logger.warning("Setting training_phase_only=True")
|
157 |
+
|
158 |
+
# Verify dataset is pre-tokenized
|
159 |
+
logger.info("IMPORTANT: Using pre-tokenized dataset - No tokenization will be performed")
|
160 |
+
|
161 |
+
# Set the output directory
|
162 |
+
output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
|
163 |
+
os.makedirs(output_dir, exist_ok=True)
|
164 |
+
|
165 |
+
# Create training marker
|
166 |
+
create_training_marker(output_dir)
|
167 |
+
|
168 |
+
try:
|
169 |
+
# Print configuration summary
|
170 |
+
logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
|
171 |
+
logger.info("Configuration Summary:")
|
172 |
+
logger.info(f"Model: {model_config.get('model_name_or_path')}")
|
173 |
+
logger.info(f"Dataset: {dataset_name}")
|
174 |
+
logger.info(f"Output directory: {output_dir}")
|
175 |
+
logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
|
176 |
+
|
177 |
+
# Load and prepare the dataset
|
178 |
+
dataset = load_and_prepare_dataset(dataset_name, config)
|
179 |
+
|
180 |
+
# Initialize tokenizer (just for model initialization, not for tokenizing data)
|
181 |
+
logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
|
182 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
183 |
+
model_config.get("model_name_or_path"),
|
184 |
+
trust_remote_code=True
|
185 |
+
)
|
186 |
+
tokenizer.pad_token = tokenizer.eos_token
|
187 |
+
|
188 |
+
# Initialize model with unsloth
|
189 |
+
logger.info("Initializing model with unsloth (preserving 4-bit quantization)")
|
190 |
+
max_seq_length = training_config.get("max_seq_length", 2048)
|
191 |
+
|
192 |
+
# Create LoRA config
|
193 |
+
peft_config = LoraConfig(
|
194 |
+
r=lora_config.get("r", 16),
|
195 |
+
lora_alpha=lora_config.get("lora_alpha", 32),
|
196 |
+
lora_dropout=lora_config.get("lora_dropout", 0.05),
|
197 |
+
bias=lora_config.get("bias", "none"),
|
198 |
+
target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
|
199 |
+
)
|
200 |
+
|
201 |
+
# Initialize model with unsloth, preserving existing 4-bit quantization
|
202 |
+
logger.info("Loading pre-quantized model with unsloth")
|
203 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
204 |
+
model_name=model_config.get("model_name_or_path"),
|
205 |
+
max_seq_length=max_seq_length,
|
206 |
+
dtype=torch.float16 if hardware_config.get("fp16", True) else None,
|
207 |
+
load_in_4bit=False, # Don't re-quantize, model is already 4-bit
|
208 |
+
use_existing_bnb_quantization=True # Use the existing quantization
|
209 |
+
)
|
210 |
+
model = FastLanguageModel.get_peft_model(
|
211 |
+
model,
|
212 |
+
peft_config=peft_config,
|
213 |
+
tokenizer=tokenizer,
|
214 |
+
use_gradient_checkpointing=hardware_config.get("gradient_checkpointing", True)
|
215 |
+
)
|
216 |
+
|
217 |
+
# No need to format the dataset - it's already pre-tokenized
|
218 |
+
logger.info("Using pre-tokenized dataset - skipping tokenization step")
|
219 |
+
training_dataset = dataset
|
220 |
+
|
221 |
+
# Configure wandb if API key is available
|
222 |
+
reports = ["tensorboard"]
|
223 |
+
if os.getenv("WANDB_API_KEY"):
|
224 |
+
reports.append("wandb")
|
225 |
+
logger.info("Wandb API key found, enabling wandb reporting")
|
226 |
+
else:
|
227 |
+
logger.info("No Wandb API key found, using tensorboard only")
|
228 |
+
|
229 |
+
# Set up training arguments
|
230 |
+
training_args = TrainingArguments(
|
231 |
+
output_dir=output_dir,
|
232 |
+
num_train_epochs=training_config.get("num_train_epochs", 3),
|
233 |
+
per_device_train_batch_size=training_config.get("per_device_train_batch_size", 2),
|
234 |
+
gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
|
235 |
+
learning_rate=training_config.get("learning_rate", 2e-5),
|
236 |
+
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
|
237 |
+
warmup_ratio=training_config.get("warmup_ratio", 0.03),
|
238 |
+
weight_decay=training_config.get("weight_decay", 0.01),
|
239 |
+
optim=training_config.get("optim", "adamw_torch"),
|
240 |
+
logging_steps=training_config.get("logging_steps", 10),
|
241 |
+
save_steps=training_config.get("save_steps", 200),
|
242 |
+
save_total_limit=training_config.get("save_total_limit", 3),
|
243 |
+
fp16=hardware_config.get("fp16", True),
|
244 |
+
bf16=hardware_config.get("bf16", False),
|
245 |
+
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
246 |
+
report_to=reports,
|
247 |
+
logging_first_step=training_config.get("logging_first_step", True),
|
248 |
+
disable_tqdm=training_config.get("disable_tqdm", False)
|
249 |
+
)
|
250 |
+
|
251 |
+
# Create trainer with pre-tokenized collator
|
252 |
+
trainer = Trainer(
|
253 |
+
model=model,
|
254 |
+
args=training_args,
|
255 |
+
train_dataset=training_dataset,
|
256 |
+
data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id),
|
257 |
+
)
|
258 |
+
|
259 |
+
# Start training
|
260 |
+
logger.info("Starting training - RESEARCH PHASE ONLY")
|
261 |
+
trainer.train()
|
262 |
+
|
263 |
+
# Save the model
|
264 |
+
logger.info(f"Saving model to {output_dir}")
|
265 |
+
trainer.save_model(output_dir)
|
266 |
+
|
267 |
+
# Save LoRA adapter separately for easier deployment
|
268 |
+
lora_output_dir = os.path.join(output_dir, "lora_adapter")
|
269 |
+
model.save_pretrained(lora_output_dir)
|
270 |
+
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
|
271 |
+
|
272 |
+
# Save tokenizer for completeness
|
273 |
+
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
|
274 |
+
tokenizer.save_pretrained(tokenizer_output_dir)
|
275 |
+
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
|
276 |
+
|
277 |
+
# Copy config file for reference
|
278 |
+
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
|
279 |
+
json.dump(config, f, indent=2)
|
280 |
+
|
281 |
+
logger.info("Training complete - RESEARCH PHASE ONLY")
|
282 |
+
return output_dir
|
283 |
+
|
284 |
+
finally:
|
285 |
+
# Always remove the training marker when done
|
286 |
+
remove_training_marker()
|
287 |
+
|
288 |
+
if __name__ == "__main__":
|
289 |
+
parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-4bit model (RESEARCH ONLY)")
|
290 |
+
parser.add_argument("--config", type=str, default="transformers_config.json",
|
291 |
+
help="Path to the transformers config JSON file")
|
292 |
+
parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset",
|
293 |
+
help="Dataset name or path")
|
294 |
+
parser.add_argument("--output_dir", type=str, default=None,
|
295 |
+
help="Output directory for the fine-tuned model")
|
296 |
+
|
297 |
+
args = parser.parse_args()
|
298 |
+
|
299 |
+
# Run training - Research phase only
|
300 |
+
try:
|
301 |
+
output_path = train(args.config, args.dataset, args.output_dir)
|
302 |
+
print(f"Research training completed. Model saved to: {output_path}")
|
303 |
+
except Exception as e:
|
304 |
+
logger.error(f"Training failed: {str(e)}")
|
305 |
+
remove_training_marker() # Clean up marker if training fails
|
306 |
+
raise
|