Spaces:
Runtime error
Runtime error
| import torch | |
| from tqdm import tqdm | |
| # from torchvision import transforms as T | |
| from typing import List, Optional, Dict, Union | |
| from models import PipelineWrapper | |
| def mu_tilde(model, xt, x0, timestep): | |
| "mu_tilde(x_t, x_0) DDPM paper eq. 7" | |
| prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps | |
| alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \ | |
| else model.scheduler.final_alpha_cumprod | |
| alpha_t = model.scheduler.alphas[timestep] | |
| beta_t = 1 - alpha_t | |
| alpha_bar = model.scheduler.alphas_cumprod[timestep] | |
| return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + \ | |
| ((alpha_t**0.5 * (1-alpha_prod_t_prev)) / (1 - alpha_bar)) * xt | |
| def sample_xts_from_x0(model, x0, num_inference_steps=50, x_prev_mode=False): | |
| """ | |
| Samples from P(x_1:T|x_0) | |
| """ | |
| # torch.manual_seed(43256465436) | |
| alpha_bar = model.model.scheduler.alphas_cumprod | |
| sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5 | |
| alphas = model.model.scheduler.alphas | |
| # betas = 1 - alphas | |
| variance_noise_shape = ( | |
| num_inference_steps + 1, | |
| model.model.unet.config.in_channels, | |
| # model.unet.sample_size, | |
| # model.unet.sample_size) | |
| x0.shape[-2], | |
| x0.shape[-1]) | |
| timesteps = model.model.scheduler.timesteps.to(model.device) | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| xts = torch.zeros(variance_noise_shape).to(x0.device) | |
| xts[0] = x0 | |
| x_prev = x0 | |
| for t in reversed(timesteps): | |
| # idx = t_to_idx[int(t)] | |
| idx = num_inference_steps-t_to_idx[int(t)] | |
| if x_prev_mode: | |
| xts[idx] = x_prev * (alphas[t] ** 0.5) + torch.randn_like(x0) * ((1-alphas[t]) ** 0.5) | |
| x_prev = xts[idx].clone() | |
| else: | |
| xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t] | |
| # xts = torch.cat([xts, x0 ],dim = 0) | |
| return xts | |
| def forward_step(model, model_output, timestep, sample): | |
| next_timestep = min(model.scheduler.config.num_train_timesteps - 2, | |
| timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps) | |
| # 2. compute alphas, betas | |
| alpha_prod_t = model.scheduler.alphas_cumprod[timestep] | |
| # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 \ | |
| # else self.scheduler.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| # 5. TODO: simple noising implementatiom | |
| next_sample = model.scheduler.add_noise(pred_original_sample, model_output, torch.LongTensor([next_timestep])) | |
| return next_sample | |
| def inversion_forward_process(model: PipelineWrapper, | |
| x0: torch.Tensor, | |
| etas: Optional[float] = None, | |
| prog_bar: bool = False, | |
| prompts: List[str] = [""], | |
| cfg_scales: List[float] = [3.5], | |
| num_inference_steps: int = 50, | |
| eps: Optional[float] = None, | |
| cutoff_points: Optional[List[float]] = None, | |
| numerical_fix: bool = False, | |
| extract_h_space: bool = False, | |
| extract_skipconns: bool = False, | |
| x_prev_mode: bool = False): | |
| if len(prompts) > 1 and extract_h_space: | |
| raise NotImplementedError("How do you split cfg_scales for hspace? TODO") | |
| if len(prompts) > 1 or prompts[0] != "": | |
| text_embeddings_hidden_states, text_embeddings_class_labels, \ | |
| text_embeddings_boolean_prompt_mask = model.encode_text(prompts) | |
| # text_embeddings = encode_text(model, prompt) | |
| # # classifier free guidance | |
| batch_size = len(prompts) | |
| cfg_scales_tensor = torch.ones((batch_size, *x0.shape[1:]), device=model.device, dtype=x0.dtype) | |
| # if len(prompts) > 1: | |
| # if cutoff_points is None: | |
| # cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)] | |
| # if len(cfg_scales) == 1: | |
| # cfg_scales *= batch_size | |
| # elif len(cfg_scales) < batch_size: | |
| # raise ValueError("Not enough target CFG scales") | |
| # cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points] | |
| # cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]] | |
| # for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])): | |
| # cfg_scales_tensor[i, :, end:] = 0 | |
| # cfg_scales_tensor[i, :, :start] = 0 | |
| # cfg_scales_tensor[i] *= cfg_scales[i] | |
| # if prompts[i] == "": | |
| # cfg_scales_tensor[i] = 0 | |
| # cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1) | |
| # else: | |
| cfg_scales_tensor *= cfg_scales[0] | |
| uncond_embedding_hidden_states, uncond_embedding_class_lables, uncond_boolean_prompt_mask = model.encode_text([""]) | |
| # uncond_embedding = encode_text(model, "") | |
| timesteps = model.model.scheduler.timesteps.to(model.device) | |
| variance_noise_shape = ( | |
| num_inference_steps, | |
| model.model.unet.config.in_channels, | |
| # model.unet.sample_size, | |
| # model.unet.sample_size) | |
| x0.shape[-2], | |
| x0.shape[-1]) | |
| if etas is None or (type(etas) in [int, float] and etas == 0): | |
| eta_is_zero = True | |
| zs = None | |
| else: | |
| eta_is_zero = False | |
| if type(etas) in [int, float]: | |
| etas = [etas]*model.model.scheduler.num_inference_steps | |
| xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps, x_prev_mode=x_prev_mode) | |
| alpha_bar = model.model.scheduler.alphas_cumprod | |
| zs = torch.zeros(size=variance_noise_shape, device=model.device) | |
| hspaces = [] | |
| skipconns = [] | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| xt = x0 | |
| # op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps) | |
| op = tqdm(timesteps) if prog_bar else timesteps | |
| for t in op: | |
| # idx = t_to_idx[int(t)] | |
| idx = num_inference_steps - t_to_idx[int(t)] - 1 | |
| # 1. predict noise residual | |
| if not eta_is_zero: | |
| xt = xts[idx+1][None] | |
| with torch.no_grad(): | |
| out, out_hspace, out_skipconns = model.unet_forward(xt, timestep=t, | |
| encoder_hidden_states=uncond_embedding_hidden_states, | |
| class_labels=uncond_embedding_class_lables, | |
| encoder_attention_mask=uncond_boolean_prompt_mask) | |
| # out = model.unet.forward(xt, timestep= t, encoder_hidden_states=uncond_embedding) | |
| if len(prompts) > 1 or prompts[0] != "": | |
| cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward( | |
| xt.expand(len(prompts), -1, -1, -1), timestep=t, | |
| encoder_hidden_states=text_embeddings_hidden_states, | |
| class_labels=text_embeddings_class_labels, | |
| encoder_attention_mask=text_embeddings_boolean_prompt_mask) | |
| # cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings) | |
| if len(prompts) > 1 or prompts[0] != "": | |
| # # classifier free guidance | |
| noise_pred = out.sample + \ | |
| (cfg_scales_tensor * (cond_out.sample - out.sample.expand(batch_size, -1, -1, -1)) | |
| ).sum(axis=0).unsqueeze(0) | |
| if extract_h_space or extract_skipconns: | |
| noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace) | |
| if extract_skipconns: | |
| noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] * | |
| (cond_out_skipconns[k][j] - out_skipconns[k][j]) | |
| for j in range(len(out_skipconns[k]))] | |
| for k in out_skipconns} | |
| else: | |
| noise_pred = out.sample | |
| if extract_h_space or extract_skipconns: | |
| noise_h_space = out_hspace | |
| if extract_skipconns: | |
| noise_skipconns = out_skipconns | |
| if extract_h_space or extract_skipconns: | |
| hspaces.append(noise_h_space) | |
| if extract_skipconns: | |
| skipconns.append(noise_skipconns) | |
| if eta_is_zero: | |
| # 2. compute more noisy image and set x_t -> x_t+1 | |
| xt = forward_step(model.model, noise_pred, t, xt) | |
| else: | |
| # xtm1 = xts[idx+1][None] | |
| xtm1 = xts[idx][None] | |
| # pred of x0 | |
| if model.model.scheduler.config.prediction_type == 'epsilon': | |
| pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5 | |
| elif model.model.scheduler.config.prediction_type == 'v_prediction': | |
| pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred | |
| # direction to xt | |
| prev_timestep = t - model.model.scheduler.config.num_train_timesteps // \ | |
| model.model.scheduler.num_inference_steps | |
| alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep) | |
| variance = model.get_variance(t, prev_timestep) | |
| if model.model.scheduler.config.prediction_type == 'epsilon': | |
| radom_noise_pred = noise_pred | |
| elif model.model.scheduler.config.prediction_type == 'v_prediction': | |
| radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt | |
| pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * radom_noise_pred | |
| mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5) | |
| zs[idx] = z | |
| # correction to avoid error accumulation | |
| if numerical_fix: | |
| xtm1 = mu_xt + (etas[idx] * variance ** 0.5)*z | |
| xts[idx] = xtm1 | |
| if zs is not None: | |
| # zs[-1] = torch.zeros_like(zs[-1]) | |
| zs[0] = torch.zeros_like(zs[0]) | |
| # zs_cycle[0] = torch.zeros_like(zs[0]) | |
| if extract_h_space: | |
| hspaces = torch.concat(hspaces, axis=0) | |
| return xt, zs, xts, hspaces | |
| if extract_skipconns: | |
| hspaces = torch.concat(hspaces, axis=0) | |
| return xt, zs, xts, hspaces, skipconns | |
| return xt, zs, xts | |
| def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None): | |
| # 1. get previous step value (=t-1) | |
| prev_timestep = timestep - model.model.scheduler.config.num_train_timesteps // \ | |
| model.model.scheduler.num_inference_steps | |
| # 2. compute alphas, betas | |
| alpha_prod_t = model.model.scheduler.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep) | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| if model.model.scheduler.config.prediction_type == 'epsilon': | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| elif model.model.scheduler.config.prediction_type == 'v_prediction': | |
| pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output | |
| # 5. compute variance: "sigma_t(η)" -> see formula (16) | |
| # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
| # variance = self.scheduler._get_variance(timestep, prev_timestep) | |
| variance = model.get_variance(timestep, prev_timestep) | |
| # std_dev_t = eta * variance ** (0.5) | |
| # Take care of asymetric reverse process (asyrp) | |
| if model.model.scheduler.config.prediction_type == 'epsilon': | |
| model_output_direction = model_output | |
| elif model.model.scheduler.config.prediction_type == 'v_prediction': | |
| model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
| # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction | |
| pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction | |
| # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| # 8. Add noice if eta > 0 | |
| if eta > 0: | |
| if variance_noise is None: | |
| variance_noise = torch.randn(model_output.shape, device=model.device) | |
| sigma_z = eta * variance ** (0.5) * variance_noise | |
| prev_sample = prev_sample + sigma_z | |
| return prev_sample | |
| def inversion_reverse_process(model: PipelineWrapper, | |
| xT: torch.Tensor, | |
| skips: torch.Tensor, | |
| fix_alpha: float = 0.1, | |
| etas: float = 0, | |
| prompts: List[str] = [""], | |
| neg_prompts: List[str] = [""], | |
| cfg_scales: Optional[List[float]] = None, | |
| prog_bar: bool = False, | |
| zs: Optional[List[torch.Tensor]] = None, | |
| # controller=None, | |
| cutoff_points: Optional[List[float]] = None, | |
| hspace_add: Optional[torch.Tensor] = None, | |
| hspace_replace: Optional[torch.Tensor] = None, | |
| skipconns_replace: Optional[Dict[int, torch.Tensor]] = None, | |
| zero_out_resconns: Optional[Union[int, List]] = None, | |
| asyrp: bool = False, | |
| extract_h_space: bool = False, | |
| extract_skipconns: bool = False): | |
| batch_size = len(prompts) | |
| text_embeddings_hidden_states, text_embeddings_class_labels, \ | |
| text_embeddings_boolean_prompt_mask = model.encode_text(prompts) | |
| uncond_embedding_hidden_states, uncond_embedding_class_lables, \ | |
| uncond_boolean_prompt_mask = model.encode_text(neg_prompts) | |
| # text_embeddings = encode_text(model, prompts) | |
| # uncond_embedding = encode_text(model, [""] * batch_size) | |
| masks = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype) | |
| cfg_scales_tensor = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype) | |
| # if batch_size > 1: | |
| # if cutoff_points is None: | |
| # cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)] | |
| # if len(cfg_scales) == 1: | |
| # cfg_scales *= batch_size | |
| # elif len(cfg_scales) < batch_size: | |
| # raise ValueError("Not enough target CFG scales") | |
| # cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points] | |
| # cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]] | |
| # for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])): | |
| # cfg_scales_tensor[i, :, end:] = 0 | |
| # cfg_scales_tensor[i, :, :start] = 0 | |
| # masks[i, :, end:] = 0 | |
| # masks[i, :, :start] = 0 | |
| # cfg_scales_tensor[i] *= cfg_scales[i] | |
| # cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1) | |
| # masks = T.functional.gaussian_blur(masks, kernel_size=15, sigma=1) | |
| # else: | |
| cfg_scales_tensor *= cfg_scales[0] | |
| if etas is None: | |
| etas = 0 | |
| if type(etas) in [int, float]: | |
| etas = [etas]*model.model.scheduler.num_inference_steps | |
| assert len(etas) == model.model.scheduler.num_inference_steps | |
| timesteps = model.model.scheduler.timesteps.to(model.device) | |
| # xt = xT.expand(1, -1, -1, -1) | |
| xt = xT[skips.max()].unsqueeze(0) | |
| op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])} | |
| hspaces = [] | |
| skipconns = [] | |
| for it, t in enumerate(op): | |
| # idx = t_to_idx[int(t)] | |
| idx = model.model.scheduler.num_inference_steps - t_to_idx[int(t)] - \ | |
| (model.model.scheduler.num_inference_steps - zs.shape[0] + 1) | |
| # # Unconditional embedding | |
| with torch.no_grad(): | |
| uncond_out, out_hspace, out_skipconns = model.unet_forward( | |
| xt, timestep=t, | |
| encoder_hidden_states=uncond_embedding_hidden_states, | |
| class_labels=uncond_embedding_class_lables, | |
| encoder_attention_mask=uncond_boolean_prompt_mask, | |
| mid_block_additional_residual=(None if hspace_add is None else | |
| (1 / (cfg_scales[0] + 1)) * | |
| (hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1 | |
| else hspace_add)), | |
| replace_h_space=(None if hspace_replace is None else | |
| (hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1 | |
| else hspace_replace)), | |
| zero_out_resconns=zero_out_resconns, | |
| replace_skip_conns=(None if skipconns_replace is None else | |
| (skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1 | |
| else skipconns_replace)) | |
| ) # encoder_hidden_states = uncond_embedding) | |
| # # Conditional embedding | |
| if prompts: | |
| with torch.no_grad(): | |
| cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward( | |
| xt.expand(batch_size, -1, -1, -1), | |
| timestep=t, | |
| encoder_hidden_states=text_embeddings_hidden_states, | |
| class_labels=text_embeddings_class_labels, | |
| encoder_attention_mask=text_embeddings_boolean_prompt_mask, | |
| mid_block_additional_residual=(None if hspace_add is None else | |
| (cfg_scales[0] / (cfg_scales[0] + 1)) * | |
| (hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1 | |
| else hspace_add)), | |
| replace_h_space=(None if hspace_replace is None else | |
| (hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1 | |
| else hspace_replace)), | |
| zero_out_resconns=zero_out_resconns, | |
| replace_skip_conns=(None if skipconns_replace is None else | |
| (skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1 | |
| else skipconns_replace)) | |
| ) # encoder_hidden_states = text_embeddings) | |
| z = zs[idx] if zs is not None else None | |
| # print(f'idx: {idx}') | |
| # print(f't: {t}') | |
| z = z.unsqueeze(0) | |
| # z = z.expand(batch_size, -1, -1, -1) | |
| if prompts: | |
| # # classifier free guidance | |
| # noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample) | |
| noise_pred = uncond_out.sample + \ | |
| (cfg_scales_tensor * (cond_out.sample - uncond_out.sample.expand(batch_size, -1, -1, -1)) | |
| ).sum(axis=0).unsqueeze(0) | |
| if extract_h_space or extract_skipconns: | |
| noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace) | |
| if extract_skipconns: | |
| noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] * | |
| (cond_out_skipconns[k][j] - out_skipconns[k][j]) | |
| for j in range(len(out_skipconns[k]))] | |
| for k in out_skipconns} | |
| else: | |
| noise_pred = uncond_out.sample | |
| if extract_h_space or extract_skipconns: | |
| noise_h_space = out_hspace | |
| if extract_skipconns: | |
| noise_skipconns = out_skipconns | |
| if extract_h_space or extract_skipconns: | |
| hspaces.append(noise_h_space) | |
| if extract_skipconns: | |
| skipconns.append(noise_skipconns) | |
| # 2. compute less noisy image and set x_t -> x_t-1 | |
| xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z) | |
| # if controller is not None: | |
| # xt = controller.step_callback(xt) | |
| # "fix" xt | |
| apply_fix = ((skips.max() - skips) > it) | |
| if apply_fix.any(): | |
| apply_fix = (apply_fix * fix_alpha).unsqueeze(1).unsqueeze(2).unsqueeze(3).to(xT.device) | |
| xt = (masks * (xt.expand(batch_size, -1, -1, -1) * (1 - apply_fix) + | |
| apply_fix * xT[skips.max() - it - 1].expand(batch_size, -1, -1, -1)) | |
| ).sum(axis=0).unsqueeze(0) | |
| if extract_h_space: | |
| return xt, zs, torch.concat(hspaces, axis=0) | |
| if extract_skipconns: | |
| return xt, zs, torch.concat(hspaces, axis=0), skipconns | |
| return xt, zs | |