Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import numpy as np | |
| import random | |
| from diffusers import DiffusionPipeline, AutoencoderTiny | |
| import torch | |
| from PIL import Image | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
| torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| # Load Tiny Autoencoder and optimize its decoder layers with torch.compile | |
| taesd3 = ( | |
| AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16) | |
| .half() | |
| .eval() | |
| .requires_grad_(False) | |
| .to(device) | |
| ) | |
| taesd3.decoder.layers = torch.compile( | |
| taesd3.decoder.layers, | |
| fullgraph=True, | |
| dynamic=False, | |
| mode="max-autotune-no-cudagraphs", | |
| ) | |
| # Load main Stable Diffusion pipeline with Tiny Autoencoder | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, vae=taesd3).to(device) | |
| pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors") | |
| trigger_word = "hyper realistic" | |
| pipe.fuse_lora(lora_scale=1.0) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # Define styles | |
| style_list = [ | |
| { | |
| "name": "3840 x 2160", | |
| "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "2560 x 1440", | |
| "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "HD+", | |
| "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "Style Zero", | |
| "prompt": "{prompt}", | |
| "negative_prompt": "", | |
| }, | |
| ] | |
| STYLE_NAMES = [style["name"] for style in style_list] | |
| DEFAULT_STYLE_NAME = STYLE_NAMES[0] | |
| grid_sizes = { | |
| "2x1": (2, 1), | |
| "1x2": (1, 2), | |
| "2x2": (2, 2), | |
| "2x3": (2, 3), | |
| "3x2": (3, 2), | |
| "1x1": (1, 1) | |
| } | |
| def infer( | |
| prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=7.5, | |
| num_inference_steps=4, | |
| style="Style Zero", | |
| grid_size="1x1", | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| selected_style = next(s for s in style_list if s["name"] == style) | |
| styled_prompt = selected_style["prompt"].format(prompt=prompt) | |
| styled_negative_prompt = selected_style["negative_prompt"] | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1)) | |
| num_images = grid_size_x * grid_size_y | |
| options = { | |
| "prompt": styled_prompt, | |
| "negative_prompt": styled_negative_prompt, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "width": width, | |
| "height": height, | |
| "generator": generator, | |
| "num_images_per_prompt": num_images, | |
| } | |
| torch.cuda.empty_cache() # Clear GPU memory | |
| result = pipe(**options) | |
| grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y)) | |
| for i, img in enumerate(result.images[:num_images]): | |
| grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height)) | |
| return grid_img, seed | |
| examples = [ | |
| "A tiny astronaut hatching from an egg on the moon, 4k, planet theme", | |
| "An anime illustration of a wiener schnitzel --style raw5, 4K", | |
| "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic", | |
| "A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw" | |
| ] | |
| css = ''' | |
| .gradio-container{max-width: 585px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## SD3.5 TURBO") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Row(visible=False): | |
| style_selection = gr.Radio( | |
| show_label=True, | |
| container=True, | |
| interactive=True, | |
| choices=STYLE_NAMES, | |
| value=DEFAULT_STYLE_NAME, | |
| label="Quality Style", | |
| ) | |
| with gr.Row(visible=True): | |
| grid_size_selection = gr.Dropdown( | |
| choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"], | |
| value="1x1", | |
| label="Grid Size" | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False, visible=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=7.5, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| gr.Examples(examples=examples, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| fn=infer, | |
| cache_examples=False) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| style_selection, | |
| grid_size_selection, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |