Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
demo = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="GhostAI Text Generation")
|
14 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from datasets import load_dataset
|
4 |
+
from translate import Translator
|
5 |
|
6 |
+
# Modelo base
|
7 |
+
MODEL_KEY = "EleutherAI/gpt-neo-125M"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_KEY)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_KEY)
|
10 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# Mapa de dominios y estilos por dataset
|
13 |
+
context_map = {
|
14 |
+
"imdb": "Dom: Cine | Estilo: Opinión",
|
15 |
+
"daily_dialog": "Dom: Conversación | Estilo: Diálogo diario",
|
16 |
+
"go_emotions": "Dom: Emociones | Estilo: Clasificación emocional",
|
17 |
+
"wikitext": "Dom: Enciclopedia | Estilo: Conocimiento general",
|
18 |
+
}
|
19 |
+
|
20 |
+
# Dataset de prueba
|
21 |
+
available_datasets = list(context_map.keys())
|
22 |
+
|
23 |
+
# Función para generar texto
|
24 |
+
def generate_text(dataset_name, sample_index, max_length):
|
25 |
+
dataset = load_dataset(dataset_name, split="train[:1%]") # Ligero
|
26 |
+
if sample_index >= len(dataset):
|
27 |
+
return "Índice fuera de rango."
|
28 |
+
|
29 |
+
example = dataset[sample_index]
|
30 |
+
text = example.get("text") or example.get("utterance") or example.get("content") or str(example)
|
31 |
+
|
32 |
+
context = context_map.get(dataset_name, "Dom: Desconocido | Estilo: Desconocido")
|
33 |
+
prompt = f"{context} | Entrada: {text}"
|
34 |
+
output = generator(prompt, max_length=int(max_length), num_return_sequences=1)[0]["generated_text"]
|
35 |
+
return output
|
36 |
+
|
37 |
+
# Traducción
|
38 |
+
def translate_text(text, lang):
|
39 |
+
translator = Translator(to_lang=lang)
|
40 |
+
try:
|
41 |
+
return translator.translate(text)
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error: {str(e)}"
|
44 |
+
|
45 |
+
# Interfaz con Gradio
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("# 🧠 MultiDomain Text Generator + Translator")
|
48 |
+
|
49 |
+
with gr.Tab("Generar desde dataset"):
|
50 |
+
dataset_name = gr.Dropdown(choices=available_datasets, value="imdb", label="Elige dataset")
|
51 |
+
sample_index = gr.Slider(minimum=30, maximum=200, step=1, label="Índice del ejemplo", value=0)
|
52 |
+
max_len = gr.Slider(label="Longitud máxima", minimum=50, maximum=1024, step=4, value=104)
|
53 |
+
output_text = gr.Textbox(label="Texto generado")
|
54 |
+
btn_generate = gr.Button("Generar texto")
|
55 |
+
btn_generate.click(generate_text, inputs=[dataset_name, sample_index, max_len], outputs=output_text)
|
56 |
+
|
57 |
+
with gr.Tab("Traducir texto"):
|
58 |
+
input_text = gr.Textbox(label="Texto a traducir")
|
59 |
+
lang = gr.Textbox(label="Código de idioma destino", value="en")
|
60 |
+
output_translation = gr.Textbox(label="Texto traducido")
|
61 |
+
btn_translate = gr.Button("Traducir")
|
62 |
+
btn_translate.click(translate_text, inputs=[input_text, lang], outputs=output_translation)
|
63 |
|
|
|
64 |
demo.launch()
|
65 |
+
|