File size: 7,616 Bytes
2417517
 
 
 
 
 
 
 
 
6d8f3bd
2417517
 
a71c6d0
f10feac
 
2417517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fe41f
 
 
 
2417517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8f3bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import runpod

import base64
import faster_whisper
import tempfile
import logging
import torch
import sys
import requests
import os

import whisper_online

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler(sys.stdout)])

# Try to import the module
try:
    logging.info("attempting to load whisper online")
    from whisper_online import *  # Replace 'some_module' with the actual module name

    logging.info("Successfully imported whisper_online.")
except ImportError as e:
    logging.error(f"Failed to import whisper_online: {e}", exc_info=True)
except Exception as e:
    logging.error(f"Unknown from exception- error to import whisper_online: {e}", exc_info=True)

if torch.cuda.is_available():
    logging.info(f"CUDA is available.")
else:
    logging.info("CUDA is not available. Using CPU.")

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model_name = 'ivrit-ai/faster-whisper-v2-d3-e3'
logging.info(f"Selected model name: {model_name}")
#model = faster_whisper.WhisperModel(model_name, device=device)
try:
    lan = 'he'
    logging.info(f"Attempting to initialize FasterWhisperASR with device: {device}")
    logging.info(f"Cache directory before: {tempfile.gettempdir()}")  # Log the temp directory
    cache_dir = os.environ.get('XDG_CACHE_HOME', tempfile.gettempdir())
    logging.info(f"Cache directory after: {tempfile.gettempdir()}")  # Log the temp directory
    model = whisper_online.FasterWhisperASR(lan=lan, modelsize=model_name, cache_dir=cache_dir, model_dir=None)
    logging.info("FasterWhisperASR model initialized successfully.")
except Exception as e:
    logging.error(f"Falied to inilialize faster whisper model {e}")

# Maximum data size: 200MB
MAX_PAYLOAD_SIZE = 200 * 1024 * 1024


def download_file(url, max_size_bytes, output_filename, api_key=None):
    """
    Download a file from a given URL with size limit and optional API key.

    Args:
    url (str): The URL of the file to download.
    max_size_bytes (int): Maximum allowed file size in bytes.
    output_filename (str): The name of the file to save the download as.
    api_key (str, optional): API key to be used as a bearer token.

    Returns:
    bool: True if download was successful, False otherwise.
    """
    try:
        # Prepare headers
        headers = {}
        if api_key:
            headers['Authorization'] = f'Bearer {api_key}'

        # Send a GET request
        response = requests.get(url, stream=True, headers=headers)
        response.raise_for_status()  # Raises an HTTPError for bad requests

        # Get the file size if possible
        file_size = int(response.headers.get('Content-Length', 0))

        if file_size > max_size_bytes:
            print(f"File size ({file_size} bytes) exceeds the maximum allowed size ({max_size_bytes} bytes).")
            return False

        # Download and write the file
        downloaded_size = 0
        with open(output_filename, 'wb') as file:
            for chunk in response.iter_content(chunk_size=8192):
                downloaded_size += len(chunk)
                if downloaded_size > max_size_bytes:
                    print(f"Download stopped: Size limit exceeded ({max_size_bytes} bytes).")
                    return False
                file.write(chunk)

        print(f"File downloaded successfully: {output_filename}")
        return True

    except requests.RequestException as e:
        print(f"Error downloading file: {e}")
        return False


def transcribe(job):
    datatype = job['input'].get('type', None)
    if not datatype:
        return {"error": "datatype field not provided. Should be 'blob' or 'url'."}

    if not datatype in ['blob', 'url']:
        return {"error": f"datatype should be 'blob' or 'url', but is {datatype} instead."}

    # Get the API key from the job input
    api_key = job['input'].get('api_key', None)

    with tempfile.TemporaryDirectory() as d:
        audio_file = f'{d}/audio.mp3'

        if datatype == 'blob':
            mp3_bytes = base64.b64decode(job['input']['data'])
            open(audio_file, 'wb').write(mp3_bytes)
        elif datatype == 'url':
            success = download_file(job['input']['url'], MAX_PAYLOAD_SIZE, audio_file, api_key)
            if not success:
                return {"error": f"Error downloading data from {job['input']['url']}"}

        result = transcribe_core(audio_file)
        return {'result': result}


def transcribe_core(audio_file):
    print('Transcribing...')

    ret = {'segments': []}

    segs, dummy = model.transcribe(audio_file, language='he', word_timestamps=True)
    for s in segs:
        words = []
        for w in s.words:
            words.append({'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability})

        seg = {'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text, 'avg_logprob': s.avg_logprob,
               'compression_ratio': s.compression_ratio, 'no_speech_prob': s.no_speech_prob, 'words': words}

        print(seg)
        ret['segments'].append(seg)

    return ret


#runpod.serverless.start({"handler": transcribe})

def transcribe_whisper(job):
    logging.info(f"in triscribe-whisper")
    datatype = job['input'].get('type', None)
    if not datatype:
        return {"error": "datatype field not provided. Should be 'blob' or 'url'."}

    if not datatype in ['blob', 'url']:
        return {"error": f"datatype should be 'blob' or 'url', but is {datatype} instead."}

    # Get the API key from the job input
    api_key = job['input'].get('api_key', None)

    with tempfile.TemporaryDirectory() as d:
        audio_file = f'{d}/audio.mp3'

        if datatype == 'blob':
            mp3_bytes = base64.b64decode(job['input']['data'])
            open(audio_file, 'wb').write(mp3_bytes)
        elif datatype == 'url':
            success = download_file(job['input']['url'], MAX_PAYLOAD_SIZE, audio_file, api_key)
            if not success:
                return {"error": f"Error downloading data from {job['input']['url']}"}
        logging.info("Starting transcription process using transcribe_core_whisper.")
        result = transcribe_core_whisper(audio_file)
        logging.info(f"DONE: in triscribe-whisper")
        return {'result': result}

def transcribe_core_whisper(audio_file):
    print('Transcribing...')

    ret = {'segments': []}

    try:
        logging.debug(f"Transcribing audio file: {audio_file}")

        segs = model.transcribe(audio_file, init_prompt="")
        logging.info("Transcription completed successfully.")
        for s in segs:
            words = []
            for w in s.words:
                words.append({'start': w.start, 'end': w.end, 'word': w.word, 'probability': w.probability})

            seg = {'id': s.id, 'seek': s.seek, 'start': s.start, 'end': s.end, 'text': s.text, 'avg_logprob': s.avg_logprob,
                   'compression_ratio': s.compression_ratio, 'no_speech_prob': s.no_speech_prob, 'words': words}
            logging.debug(f"All segments processed. Final transcription result: {ret}")
            print(seg)
            ret['segments'].append(seg)

    except Exception as e:
        # Log any exception that occurs during the transcription process
        logging.error(f"Error during transcribe_core_whisper: {e}", exc_info=True)
        return {"error": str(e)}
    # Return the final result
    logging.info("Transcription core function completed.")
    return ret

#runpod.serverless.start({"handler": transcribe_whisper})