Spaces:
Sleeping
Sleeping
AshDavid12
commited on
Commit
·
b3935fd
1
Parent(s):
460f073
trying ivrit model
Browse files- infer.py +27 -38
- requirements.txt +2 -0
infer.py
CHANGED
|
@@ -1,44 +1,33 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 3 |
import requests
|
| 4 |
-
|
| 5 |
import io
|
| 6 |
|
| 7 |
-
# Load the
|
| 8 |
-
|
| 9 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
| 10 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
model.to(device)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
audio_url = "https://www.signalogic.com/melp/EngSamples/Orig/male.wav"
|
| 18 |
-
|
| 19 |
-
# Download the audio file
|
| 20 |
response = requests.get(audio_url)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 42 |
-
|
| 43 |
-
# Print the transcription result
|
| 44 |
-
print("Transcription:", transcription)
|
|
|
|
| 1 |
+
import faster_whisper
|
|
|
|
| 2 |
import requests
|
| 3 |
+
from pydub import AudioSegment
|
| 4 |
import io
|
| 5 |
|
| 6 |
+
# Load the faster-whisper model that supports Hebrew
|
| 7 |
+
model = faster_whisper.WhisperModel("ivrit-ai/faster-whisper-v2-d4")
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# URL of the mp3 audio file
|
| 10 |
+
audio_url = "https://github.com/metaldaniel/HebrewASR-Comparison/raw/main/HaTankistiot_n12-mp3.mp3"
|
|
|
|
| 11 |
|
| 12 |
+
# Download the mp3 audio file from the URL
|
|
|
|
|
|
|
|
|
|
| 13 |
response = requests.get(audio_url)
|
| 14 |
+
if response.status_code != 200:
|
| 15 |
+
raise Exception("Failed to download audio file")
|
| 16 |
+
|
| 17 |
+
# Load the mp3 audio into an in-memory buffer
|
| 18 |
+
mp3_audio = io.BytesIO(response.content)
|
| 19 |
+
|
| 20 |
+
# Convert the mp3 audio to wav using pydub (in memory)
|
| 21 |
+
audio = AudioSegment.from_file(mp3_audio, format="mp3")
|
| 22 |
+
wav_audio = io.BytesIO()
|
| 23 |
+
audio.export(wav_audio, format="wav")
|
| 24 |
+
wav_audio.seek(0) # Reset the pointer to the beginning of the buffer
|
| 25 |
+
|
| 26 |
+
# Save the in-memory wav audio to a temporary file-like object
|
| 27 |
+
with io.BytesIO(wav_audio.read()) as temp_wav_file:
|
| 28 |
+
# Perform the transcription
|
| 29 |
+
segments, info = model.transcribe(temp_wav_file, language="he")
|
| 30 |
+
|
| 31 |
+
# Print transcription results
|
| 32 |
+
for segment in segments:
|
| 33 |
+
print(f"[{segment.start:.2f}s - {segment.end:.2f}s] {segment.text}")
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -3,4 +3,6 @@ whisper
|
|
| 3 |
requests
|
| 4 |
transformers
|
| 5 |
soundfile
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 3 |
requests
|
| 4 |
transformers
|
| 5 |
soundfile
|
| 6 |
+
faster-whisper
|
| 7 |
+
pydub
|
| 8 |
|