Phi / app.py
Gil158's picture
Update app.py
9f58d7b verified
raw
history blame
1.29 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "TheBloke/phi-2-GPTQ"
bnb_config = BitsAndBytesConfig(
load_in_4bit=False # Força desabilitar quantização
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
quantization_config=bnb_config
)
# Pipeline de texto
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Função do chat + salvar memória
def chat(user_input, history):
prompt = user_input
result = pipe(prompt, max_new_tokens=256, temperature=0.7)[0]["generated_text"]
# Salvar memória em arquivo
with open("memoria.txt", "a", encoding="utf-8") as f:
f.write(f"User: {user_input}\nAI: {result}\n")
return result
# Interface Gradio
with gr.Blocks() as demo:
chat_history = gr.State([])
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Digite sua pergunta:")
def respond(user_input, chat_history):
answer = chat(user_input, chat_history)
chat_history.append((user_input, answer))
return chat_history, chat_history
msg.submit(respond, [msg, chat_history], [chatbot, chat_history])
demo.launch()