Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
|
4 |
+
# Carregar o modelo direto do HuggingFace Hub
|
5 |
+
model_id = "microsoft/phi-2"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
8 |
|
9 |
+
# Pipeline de gera莽茫o de texto
|
10 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# Fun莽茫o do chat com salvamento de mem贸ria
|
13 |
+
def chat(user_input, history):
|
14 |
+
prompt = user_input
|
15 |
+
result = pipe(prompt, max_new_tokens=256, temperature=0.7)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Salvar mem贸ria em arquivo
|
18 |
+
with open("log.txt", "a", encoding="utf-8") as f:
|
19 |
+
f.write(f"User: {user_input}\nAI: {result}\n")
|
|
|
|
|
20 |
|
21 |
+
return result
|
22 |
|
23 |
+
# Interface Gradio
|
24 |
+
with gr.Blocks() as demo:
|
25 |
+
chat_history = gr.State([])
|
26 |
+
chatbot = gr.Chatbot()
|
27 |
+
msg = gr.Textbox(label="Digite sua pergunta:")
|
28 |
|
29 |
+
def respond(user_input, chat_history):
|
30 |
+
answer = chat(user_input, chat_history)
|
31 |
+
chat_history.append((user_input, answer))
|
32 |
+
return chat_history, chat_history
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
msg.submit(respond, [msg, chat_history], [chatbot, chat_history])
|
|
|
35 |
|
36 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|