Giustino Esposito commited on
Commit
067f113
·
1 Parent(s): d5ccf60

removed app file

Browse files
Files changed (1) hide show
  1. app.py +0 -110
app.py DELETED
@@ -1,110 +0,0 @@
1
- import os
2
- # Import the load_dotenv function from the dotenv library
3
- from dotenv import load_dotenv
4
- from langchain_google_genai import ChatGoogleGenerativeAI
5
-
6
- from multimodal_tools import extract_text_tool, analyze_image_tool, analyze_audio_tool
7
-
8
- # Load environment variables from .env file
9
- load_dotenv()
10
- # Read your API key from the environment variable or set it manually
11
- api_key = os.getenv("GEMINI_API_KEY")
12
- langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
13
- langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
14
-
15
- from typing import TypedDict, Annotated
16
- from langgraph.graph.message import add_messages
17
- from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
18
- from langgraph.prebuilt import ToolNode
19
- from langgraph.graph import START, StateGraph
20
- from langgraph.prebuilt import tools_condition
21
- from langchain_community.tools.tavily_search import TavilySearchResults # Importa Tavily
22
- from langchain_community.tools import DuckDuckGoSearchRun
23
- # from langfuse import Langfuse # Langfuse is initialized by CallbackHandler directly
24
- from langfuse.callback import CallbackHandler
25
- from youtube_tools import youtube_transcript_tool
26
- from math_tools import add_tool, subtract_tool, multiply_tool, divide_tool
27
- from serpapi_tools import serpapi_search_tool
28
- from IPython.display import Image, display
29
- # Generate thfrom langchain_community.tools.tavily_search import TavilySearchResults
30
- from langchain_community.tools.tavily_search import TavilySearchResults
31
-
32
-
33
- # Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
34
- langfuse_handler = CallbackHandler(
35
- public_key=langfuse_public_key,
36
- secret_key=langfuse_secret_key,
37
- host="http://localhost:3000"
38
- )
39
-
40
- # Create LLM class
41
- chat = ChatGoogleGenerativeAI(
42
- model= "gemini-2.5-pro-preview-05-06",
43
- temperature=0,
44
- max_retries=2,
45
- google_api_key=api_key,
46
- thinking_budget= 0
47
- )
48
-
49
- search_tool = TavilySearchResults(
50
- name="tavily_web_search", # Puoi personalizzare il nome se vuoi
51
- description="Esegue una ricerca web avanzata utilizzando Tavily per informazioni aggiornate e complete. Utile per domande complesse o che richiedono dati recenti. Può essere utile fare più ricerche modificando la query per ottenere risultati migliori.", # Descrizione per l'LLM
52
- max_results=5
53
- )
54
-
55
- tools = [
56
- extract_text_tool,
57
- analyze_image_tool,
58
- analyze_audio_tool,
59
- youtube_transcript_tool,
60
- add_tool,
61
- subtract_tool,
62
- multiply_tool,
63
- divide_tool,
64
- search_tool
65
- ]
66
- chat_with_tools = chat.bind_tools(tools)
67
-
68
-
69
- class AgentState(TypedDict):
70
- messages: Annotated[list[AnyMessage], add_messages]
71
-
72
- def assistant(state: AgentState):
73
- sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \
74
- "Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \
75
- "Your final output needs to be just the string or integer containing the answer, not an array or technical stuff."
76
- return {
77
- "messages": [chat_with_tools.invoke([sys_msg] + state["messages"])]
78
- }
79
-
80
-
81
- ## The graph
82
- builder = StateGraph(AgentState)
83
-
84
- # Define nodes: these do the work
85
- builder.add_node("assistant", assistant)
86
- builder.add_node("tools", ToolNode(tools))
87
-
88
- # Define edges: these determine how the control flow moves
89
- builder.add_edge(START, "assistant")
90
- builder.add_conditional_edges(
91
- "assistant",
92
- # If the latest message requires a tool, route to tools
93
- # Otherwise, provide a direct response
94
- tools_condition,
95
- )
96
- builder.add_edge("tools", "assistant")
97
- alfred = builder.compile()
98
-
99
- """ # Salva l'immagine del grafo su un file
100
- graph_image_bytes = alfred.get_graph(xray=True).draw_mermaid_png()
101
- with open("alfred_graph.png", "wb") as f:
102
- f.write(graph_image_bytes)
103
- print("L'immagine del grafo è stata salvata come alfred_graph.png")
104
-
105
- messages = [HumanMessage(content="Who did the actor who played Ray in the Polish-language version of Everybody Loves Raymond play in Magda M.? Give only the first name.")]
106
- response = alfred.invoke(input={"messages": messages}, config={"callbacks": [langfuse_handler]})
107
-
108
- print("🎩 Alfred's Response:")
109
- print(response['messages'][-1].content)
110
- """