Spaces:
No application file
No application file
Commit
·
c4b829b
1
Parent(s):
81917a3
first submission
Browse files- .gitignore +120 -0
- app.py +109 -195
- app_for_submission.py +227 -0
- math_tools.py +44 -0
- multimodal_tools.py +174 -0
- serpapi_tools.py +53 -0
- tools.py +69 -0
- youtube_tools.py +25 -0
.gitignore
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# PEP 582; __pypackages__
|
88 |
+
__pypackages__/
|
89 |
+
|
90 |
+
# Celery stuff
|
91 |
+
celerybeat-schedule
|
92 |
+
celerybeat.pid
|
93 |
+
|
94 |
+
# SageMath parsed files
|
95 |
+
*.sage.py
|
96 |
+
|
97 |
+
# Environments
|
98 |
+
.env
|
99 |
+
.venv
|
100 |
+
env/
|
101 |
+
venv/
|
102 |
+
ENV/
|
103 |
+
env.bak/
|
104 |
+
venv.bak/
|
105 |
+
|
106 |
+
# IDE / Editor specific files
|
107 |
+
.idea/
|
108 |
+
.vscode/
|
109 |
+
*.project
|
110 |
+
*.pydevproject
|
111 |
+
.project
|
112 |
+
.settings/
|
113 |
+
*.sublime-workspace
|
114 |
+
|
115 |
+
# dotenv
|
116 |
+
.env
|
117 |
+
|
118 |
+
# OS specific files
|
119 |
+
.DS_Store
|
120 |
+
Thumbs.db
|
app.py
CHANGED
@@ -1,196 +1,110 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
-
**Instructions:**
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
-
gr.LoginButton()
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
+
# Import the load_dotenv function from the dotenv library
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
+
|
6 |
+
from multimodal_tools import extract_text_tool, analyze_image_tool, analyze_audio_tool
|
7 |
+
|
8 |
+
# Load environment variables from .env file
|
9 |
+
load_dotenv()
|
10 |
+
# Read your API key from the environment variable or set it manually
|
11 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
12 |
+
langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
|
13 |
+
langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
|
14 |
+
|
15 |
+
from typing import TypedDict, Annotated
|
16 |
+
from langgraph.graph.message import add_messages
|
17 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
18 |
+
from langgraph.prebuilt import ToolNode
|
19 |
+
from langgraph.graph import START, StateGraph
|
20 |
+
from langgraph.prebuilt import tools_condition
|
21 |
+
from langchain_community.tools.tavily_search import TavilySearchResults # Importa Tavily
|
22 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
23 |
+
# from langfuse import Langfuse # Langfuse is initialized by CallbackHandler directly
|
24 |
+
from langfuse.callback import CallbackHandler
|
25 |
+
from youtube_tools import youtube_transcript_tool
|
26 |
+
from math_tools import add_tool, subtract_tool, multiply_tool, divide_tool
|
27 |
+
from serpapi_tools import serpapi_search_tool
|
28 |
+
from IPython.display import Image, display
|
29 |
+
# Generate thfrom langchain_community.tools.tavily_search import TavilySearchResults
|
30 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
31 |
+
|
32 |
+
|
33 |
+
# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
|
34 |
+
langfuse_handler = CallbackHandler(
|
35 |
+
public_key=langfuse_public_key,
|
36 |
+
secret_key=langfuse_secret_key,
|
37 |
+
host="http://localhost:3000"
|
38 |
+
)
|
39 |
+
|
40 |
+
# Create LLM class
|
41 |
+
chat = ChatGoogleGenerativeAI(
|
42 |
+
model= "gemini-2.5-pro-preview-05-06",
|
43 |
+
temperature=0,
|
44 |
+
max_retries=2,
|
45 |
+
google_api_key=api_key,
|
46 |
+
thinking_budget= 0
|
47 |
+
)
|
48 |
+
|
49 |
+
search_tool = TavilySearchResults(
|
50 |
+
name="tavily_web_search", # Puoi personalizzare il nome se vuoi
|
51 |
+
description="Esegue una ricerca web avanzata utilizzando Tavily per informazioni aggiornate e complete. Utile per domande complesse o che richiedono dati recenti. Può essere utile fare più ricerche modificando la query per ottenere risultati migliori.", # Descrizione per l'LLM
|
52 |
+
max_results=5
|
53 |
+
)
|
54 |
+
|
55 |
+
tools = [
|
56 |
+
extract_text_tool,
|
57 |
+
analyze_image_tool,
|
58 |
+
analyze_audio_tool,
|
59 |
+
youtube_transcript_tool,
|
60 |
+
add_tool,
|
61 |
+
subtract_tool,
|
62 |
+
multiply_tool,
|
63 |
+
divide_tool,
|
64 |
+
search_tool
|
65 |
+
]
|
66 |
+
chat_with_tools = chat.bind_tools(tools)
|
67 |
+
|
68 |
+
|
69 |
+
class AgentState(TypedDict):
|
70 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
71 |
+
|
72 |
+
def assistant(state: AgentState):
|
73 |
+
sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \
|
74 |
+
"Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \
|
75 |
+
"Your final output needs to be just the string or integer containing the answer, not an array or technical stuff."
|
76 |
+
return {
|
77 |
+
"messages": [chat_with_tools.invoke([sys_msg] + state["messages"])]
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
## The graph
|
82 |
+
builder = StateGraph(AgentState)
|
83 |
+
|
84 |
+
# Define nodes: these do the work
|
85 |
+
builder.add_node("assistant", assistant)
|
86 |
+
builder.add_node("tools", ToolNode(tools))
|
87 |
+
|
88 |
+
# Define edges: these determine how the control flow moves
|
89 |
+
builder.add_edge(START, "assistant")
|
90 |
+
builder.add_conditional_edges(
|
91 |
+
"assistant",
|
92 |
+
# If the latest message requires a tool, route to tools
|
93 |
+
# Otherwise, provide a direct response
|
94 |
+
tools_condition,
|
95 |
+
)
|
96 |
+
builder.add_edge("tools", "assistant")
|
97 |
+
alfred = builder.compile()
|
98 |
+
|
99 |
+
""" # Salva l'immagine del grafo su un file
|
100 |
+
graph_image_bytes = alfred.get_graph(xray=True).draw_mermaid_png()
|
101 |
+
with open("alfred_graph.png", "wb") as f:
|
102 |
+
f.write(graph_image_bytes)
|
103 |
+
print("L'immagine del grafo è stata salvata come alfred_graph.png")
|
104 |
+
|
105 |
+
messages = [HumanMessage(content="Who did the actor who played Ray in the Polish-language version of Everybody Loves Raymond play in Magda M.? Give only the first name.")]
|
106 |
+
response = alfred.invoke(input={"messages": messages}, config={"callbacks": [langfuse_handler]})
|
107 |
+
|
108 |
+
print("🎩 Alfred's Response:")
|
109 |
+
print(response['messages'][-1].content)
|
110 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_for_submission.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
6 |
+
from app import alfred
|
7 |
+
from langfuse.callback import CallbackHandler
|
8 |
+
from typing import Optional
|
9 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
10 |
+
# (Keep Constants as is)
|
11 |
+
# --- Constants ---
|
12 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
|
14 |
+
|
15 |
+
langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
|
16 |
+
langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
|
17 |
+
|
18 |
+
# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
|
19 |
+
langfuse_handler = CallbackHandler(
|
20 |
+
public_key=langfuse_public_key,
|
21 |
+
secret_key=langfuse_secret_key,
|
22 |
+
host="http://localhost:3000"
|
23 |
+
)
|
24 |
+
|
25 |
+
# --- Basic Agent Definition ---
|
26 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
27 |
+
""" class BasicAgent:
|
28 |
+
def __init__(self):
|
29 |
+
print("BasicAgent initialized.")
|
30 |
+
def __call__(self, question: str, file_name: str | None = None) -> str:
|
31 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
32 |
+
if file_name:
|
33 |
+
print(f"Agent received file_name: {file_name}")
|
34 |
+
# Qui puoi aggiungere la logica per utilizzare file_name se fornito.
|
35 |
+
# Per ora, lo aggiungiamo alla risposta di default per dimostrazione.
|
36 |
+
fixed_answer = "This is a default answer."
|
37 |
+
if file_name:
|
38 |
+
fixed_answer += f" (File to use: {file_name})"
|
39 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
40 |
+
return fixed_answer """
|
41 |
+
|
42 |
+
def run_and_submit_all( profile: Optional[gr.OAuthProfile]):
|
43 |
+
"""
|
44 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
45 |
+
and displays the results.
|
46 |
+
"""
|
47 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
48 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
49 |
+
|
50 |
+
if profile:
|
51 |
+
username= f"{profile.username}"
|
52 |
+
print(f"User logged in: {username}")
|
53 |
+
else:
|
54 |
+
print("User not logged in.")
|
55 |
+
return "Please Login to Hugging Face with the button.", None
|
56 |
+
|
57 |
+
api_url = DEFAULT_API_URL
|
58 |
+
questions_url = f"{api_url}/questions"
|
59 |
+
submit_url = f"{api_url}/submit"
|
60 |
+
|
61 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
62 |
+
try:
|
63 |
+
agent = alfred
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error instantiating agent: {e}")
|
66 |
+
return f"Error initializing agent: {e}", None
|
67 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
68 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
69 |
+
print(agent_code)
|
70 |
+
|
71 |
+
# 2. Fetch Questions
|
72 |
+
print(f"Fetching questions from: {questions_url}")
|
73 |
+
try:
|
74 |
+
response = requests.get(questions_url, timeout=15)
|
75 |
+
response.raise_for_status()
|
76 |
+
questions_data = response.json()
|
77 |
+
if not questions_data:
|
78 |
+
print("Fetched questions list is empty.")
|
79 |
+
return "Fetched questions list is empty or invalid format.", None
|
80 |
+
print(f"Fetched {len(questions_data)} questions.")
|
81 |
+
except requests.exceptions.RequestException as e:
|
82 |
+
print(f"Error fetching questions: {e}")
|
83 |
+
return f"Error fetching questions: {e}", None
|
84 |
+
except requests.exceptions.JSONDecodeError as e:
|
85 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
86 |
+
print(f"Response text: {response.text[:500]}")
|
87 |
+
return f"Error decoding server response for questions: {e}", None
|
88 |
+
except Exception as e:
|
89 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
90 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
91 |
+
|
92 |
+
# 3. Run your Agent
|
93 |
+
results_log = []
|
94 |
+
answers_payload = []
|
95 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
96 |
+
for item in questions_data:
|
97 |
+
task_id = item.get("task_id")
|
98 |
+
question_text = item.get("question")
|
99 |
+
file_name = item.get("file_name") # Estrai file_name
|
100 |
+
|
101 |
+
if not task_id or question_text is None:
|
102 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
103 |
+
continue
|
104 |
+
try:
|
105 |
+
if file_name and isinstance(file_name, str) and file_name.strip():
|
106 |
+
messages = HumanMessage(content=question_text + " Path: files/" + file_name)
|
107 |
+
else:
|
108 |
+
messages = HumanMessage(content=question_text)
|
109 |
+
submitted_answer = alfred.invoke(input={"messages": messages}, config={"callbacks": [langfuse_handler]})
|
110 |
+
answers_payload.append({
|
111 |
+
"task_id": task_id,
|
112 |
+
"submitted_answer": submitted_answer['messages'][-1].content[-1]
|
113 |
+
if isinstance(submitted_answer['messages'][-1].content, list)
|
114 |
+
else submitted_answer['messages'][-1].content
|
115 |
+
})
|
116 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "File Name": file_name if file_name and file_name.strip() else "N/A", "Submitted Answer": submitted_answer['messages'][-1].content})
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Error running agent on task {task_id}: {e}")
|
119 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
120 |
+
|
121 |
+
if not answers_payload:
|
122 |
+
print("Agent did not produce any answers to submit.")
|
123 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
124 |
+
|
125 |
+
# 4. Prepare Submission
|
126 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
127 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
128 |
+
print(status_update)
|
129 |
+
|
130 |
+
# 5. Submit
|
131 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
132 |
+
try:
|
133 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
134 |
+
response.raise_for_status()
|
135 |
+
result_data = response.json()
|
136 |
+
final_status = (
|
137 |
+
f"Submission Successful!\n"
|
138 |
+
f"User: {result_data.get('username')}\n"
|
139 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
140 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
141 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
142 |
+
)
|
143 |
+
print("Submission successful.")
|
144 |
+
results_df = pd.DataFrame(results_log)
|
145 |
+
return final_status, results_df
|
146 |
+
except requests.exceptions.HTTPError as e:
|
147 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
148 |
+
try:
|
149 |
+
error_json = e.response.json()
|
150 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
151 |
+
except requests.exceptions.JSONDecodeError:
|
152 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
153 |
+
status_message = f"Submission Failed: {error_detail}"
|
154 |
+
print(status_message)
|
155 |
+
results_df = pd.DataFrame(results_log)
|
156 |
+
return status_message, results_df
|
157 |
+
except requests.exceptions.Timeout:
|
158 |
+
status_message = "Submission Failed: The request timed out."
|
159 |
+
print(status_message)
|
160 |
+
results_df = pd.DataFrame(results_log)
|
161 |
+
return status_message, results_df
|
162 |
+
except requests.exceptions.RequestException as e:
|
163 |
+
status_message = f"Submission Failed: Network error - {e}"
|
164 |
+
print(status_message)
|
165 |
+
results_df = pd.DataFrame(results_log)
|
166 |
+
return status_message, results_df
|
167 |
+
except Exception as e:
|
168 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
169 |
+
print(status_message)
|
170 |
+
results_df = pd.DataFrame(results_log)
|
171 |
+
return status_message, results_df
|
172 |
+
|
173 |
+
|
174 |
+
# --- Build Gradio Interface using Blocks ---
|
175 |
+
with gr.Blocks() as demo:
|
176 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
177 |
+
gr.Markdown(
|
178 |
+
"""
|
179 |
+
**Instructions:**
|
180 |
+
|
181 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
182 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
183 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
184 |
+
|
185 |
+
---
|
186 |
+
**Disclaimers:**
|
187 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
188 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
189 |
+
"""
|
190 |
+
)
|
191 |
+
|
192 |
+
gr.LoginButton()
|
193 |
+
|
194 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
195 |
+
|
196 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
197 |
+
# Removed max_rows=10 from DataFrame constructor
|
198 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
199 |
+
|
200 |
+
run_button.click(
|
201 |
+
fn=run_and_submit_all,
|
202 |
+
outputs=[status_output, results_table]
|
203 |
+
)
|
204 |
+
|
205 |
+
if __name__ == "__main__":
|
206 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
207 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
208 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
209 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
210 |
+
|
211 |
+
if space_host_startup:
|
212 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
213 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
214 |
+
else:
|
215 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
216 |
+
|
217 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
218 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
219 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
220 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
221 |
+
else:
|
222 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
223 |
+
|
224 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
225 |
+
|
226 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
227 |
+
demo.launch(debug=True, share=False)
|
math_tools.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import Tool
|
2 |
+
import operator
|
3 |
+
|
4 |
+
def add(a: float, b: float) -> float:
|
5 |
+
"""Adds two numbers."""
|
6 |
+
return operator.add(a, b)
|
7 |
+
|
8 |
+
def subtract(a: float, b: float) -> float:
|
9 |
+
"""Subtracts the second number from the first."""
|
10 |
+
return operator.sub(a, b)
|
11 |
+
|
12 |
+
def multiply(a: float, b: float) -> float:
|
13 |
+
"""Multiplies two numbers."""
|
14 |
+
return operator.mul(a, b)
|
15 |
+
|
16 |
+
def divide(a: float, b: float) -> float:
|
17 |
+
"""Divides the first number by the second. Returns an error message if division by zero."""
|
18 |
+
if b == 0:
|
19 |
+
return "Error: Cannot divide by zero."
|
20 |
+
return operator.truediv(a, b)
|
21 |
+
|
22 |
+
add_tool = Tool(
|
23 |
+
name="calculator_add",
|
24 |
+
func=add,
|
25 |
+
description="Adds two numbers. Input should be two numbers (a, b)."
|
26 |
+
)
|
27 |
+
|
28 |
+
subtract_tool = Tool(
|
29 |
+
name="calculator_subtract",
|
30 |
+
func=subtract,
|
31 |
+
description="Subtracts the second number from the first. Input should be two numbers (a, b)."
|
32 |
+
)
|
33 |
+
|
34 |
+
multiply_tool = Tool(
|
35 |
+
name="calculator_multiply",
|
36 |
+
func=multiply,
|
37 |
+
description="Multiplies two numbers. Input should be two numbers (a, b)."
|
38 |
+
)
|
39 |
+
|
40 |
+
divide_tool = Tool(
|
41 |
+
name="calculator_divide",
|
42 |
+
func=divide,
|
43 |
+
description="Divides the first number by the second. Input should be two numbers (a, b)."
|
44 |
+
)
|
multimodal_tools.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage
|
4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
+
from langchain.tools import Tool
|
6 |
+
from langchain_core.tools import tool
|
7 |
+
|
8 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
9 |
+
|
10 |
+
# Create LLM class
|
11 |
+
vision_llm = ChatGoogleGenerativeAI(
|
12 |
+
model= "gemini-2.5-flash-preview-05-20",
|
13 |
+
temperature=0,
|
14 |
+
max_retries=2,
|
15 |
+
google_api_key=api_key
|
16 |
+
)
|
17 |
+
|
18 |
+
def extract_text(img_path: str) -> str:
|
19 |
+
"""
|
20 |
+
Extract text from an image file using a multimodal model.
|
21 |
+
Input needs to be the path of the image.
|
22 |
+
"""
|
23 |
+
all_text = ""
|
24 |
+
try:
|
25 |
+
# Read image and encode as base64
|
26 |
+
with open(img_path, "rb") as image_file:
|
27 |
+
image_bytes = image_file.read()
|
28 |
+
|
29 |
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
30 |
+
|
31 |
+
# Prepare the prompt including the base64 image data
|
32 |
+
message = [
|
33 |
+
HumanMessage(
|
34 |
+
content=[
|
35 |
+
{
|
36 |
+
"type": "text",
|
37 |
+
"text": (
|
38 |
+
"Extract all the text from this image. "
|
39 |
+
"Return only the extracted text, no explanations."
|
40 |
+
),
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"type": "image_url",
|
44 |
+
"image_url": {
|
45 |
+
"url": f"data:image/png;base64,{image_base64}"
|
46 |
+
},
|
47 |
+
},
|
48 |
+
]
|
49 |
+
)
|
50 |
+
]
|
51 |
+
|
52 |
+
# Call the vision-capable model
|
53 |
+
response = vision_llm.invoke(message)
|
54 |
+
|
55 |
+
# Append extracted text
|
56 |
+
all_text += response.content + "\n\n"
|
57 |
+
|
58 |
+
return all_text.strip()
|
59 |
+
except Exception as e:
|
60 |
+
# A butler should handle errors gracefully
|
61 |
+
error_msg = f"Error extracting text: {str(e)}"
|
62 |
+
print(error_msg)
|
63 |
+
return ""
|
64 |
+
|
65 |
+
@tool("analyze_image_tool", parse_docstring=True)
|
66 |
+
def analyze_image_tool(user_query: str, img_path: str) -> str:
|
67 |
+
"""
|
68 |
+
Answer the question reasoning on the image.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
user_query (str): The question to be answered.
|
72 |
+
img_path (str): Path to the image file.
|
73 |
+
"""
|
74 |
+
all_text = ""
|
75 |
+
try:
|
76 |
+
# Read image and encode as base64
|
77 |
+
with open(img_path, "rb") as image_file:
|
78 |
+
image_bytes = image_file.read()
|
79 |
+
|
80 |
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
81 |
+
|
82 |
+
# Prepare the prompt including the base64 image data
|
83 |
+
message = [
|
84 |
+
HumanMessage(
|
85 |
+
content=[
|
86 |
+
{
|
87 |
+
"type": "text",
|
88 |
+
"text": (
|
89 |
+
f"User query: {user_query}"
|
90 |
+
),
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"type": "image_url",
|
94 |
+
"image_url": {
|
95 |
+
"url": f"data:image/png;base64,{image_base64}"
|
96 |
+
},
|
97 |
+
},
|
98 |
+
]
|
99 |
+
)
|
100 |
+
]
|
101 |
+
|
102 |
+
# Call the vision-capable model
|
103 |
+
response = vision_llm.invoke(message)
|
104 |
+
|
105 |
+
# Append extracted text
|
106 |
+
all_text += response.content + "\n\n"
|
107 |
+
|
108 |
+
return all_text.strip()
|
109 |
+
except Exception as e:
|
110 |
+
# A butler should handle errors gracefully
|
111 |
+
error_msg = f"Error analyzing image: {str(e)}"
|
112 |
+
print(error_msg)
|
113 |
+
return ""
|
114 |
+
|
115 |
+
@tool("analyze_audio_tool", parse_docstring=True)
|
116 |
+
def analyze_audio_tool(user_query: str, audio_path: str) -> str:
|
117 |
+
"""
|
118 |
+
Answer the question by reasoning on the provided audio file.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
user_query (str): The question to be answered.
|
122 |
+
audio_path (str): Path to the audio file (e.g., .mp3, .wav, .flac, .aac, .ogg).
|
123 |
+
"""
|
124 |
+
try:
|
125 |
+
# Determine MIME type from file extension
|
126 |
+
_filename, file_extension = os.path.splitext(audio_path)
|
127 |
+
file_extension = file_extension.lower()
|
128 |
+
|
129 |
+
supported_formats = {
|
130 |
+
".mp3": "audio/mp3", ".wav": "audio/wav", ".flac": "audio/flac",
|
131 |
+
".aac": "audio/aac", ".ogg": "audio/ogg"
|
132 |
+
}
|
133 |
+
|
134 |
+
if file_extension not in supported_formats:
|
135 |
+
return (f"Error: Unsupported audio file format '{file_extension}'. "
|
136 |
+
f"Supported extensions: {', '.join(supported_formats.keys())}.")
|
137 |
+
mime_type = supported_formats[file_extension]
|
138 |
+
|
139 |
+
# Read audio file and encode as base64
|
140 |
+
with open(audio_path, "rb") as audio_file:
|
141 |
+
audio_bytes = audio_file.read()
|
142 |
+
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
|
143 |
+
|
144 |
+
# Prepare the prompt including the base64 audio data
|
145 |
+
message = [
|
146 |
+
HumanMessage(
|
147 |
+
content=[
|
148 |
+
{
|
149 |
+
"type": "text",
|
150 |
+
"text": f"User query: {user_query}",
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"type": "audio",
|
154 |
+
"source_type": "base64",
|
155 |
+
"mime_type": mime_type,
|
156 |
+
"data": audio_base64
|
157 |
+
},
|
158 |
+
]
|
159 |
+
)
|
160 |
+
]
|
161 |
+
|
162 |
+
# Call the vision-capable model
|
163 |
+
response = vision_llm.invoke(message)
|
164 |
+
return response.content.strip()
|
165 |
+
except Exception as e:
|
166 |
+
error_msg = f"Error analyzing audio: {str(e)}"
|
167 |
+
print(error_msg)
|
168 |
+
return ""
|
169 |
+
|
170 |
+
extract_text_tool = Tool(
|
171 |
+
name="extract_text_tool",
|
172 |
+
func=extract_text,
|
173 |
+
description="Extract text from an image file using a multimodal model."
|
174 |
+
)
|
serpapi_tools.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.tools import Tool
|
3 |
+
from serpapi import GoogleSearch
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
# Carica le variabili d'ambiente se hai la chiave API in un file .env
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY")
|
10 |
+
|
11 |
+
def _serpapi_search(query: str, num_results: int = 5, gl: str = "it", hl: str = "it") -> str:
|
12 |
+
"""
|
13 |
+
Esegue una ricerca sul web utilizzando SerpAPI con Google Search e restituisce i risultati formattati.
|
14 |
+
Questo tool ha un costo elevato, pertanto sono da preferire altri tool se disponibili.
|
15 |
+
Richiamare questo tool soltanto in caso gli altri tool non siano stati soddisfacenti.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
query: La query di ricerca.
|
19 |
+
num_results: Il numero di risultati da restituire.
|
20 |
+
gl: Codice del paese per la geolocalizzazione dei risultati (es. "it" per Italia).
|
21 |
+
hl: Codice della lingua per i risultati della ricerca (es. "it" per Italiano).
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Una stringa formattata con i risultati della ricerca o un messaggio di errore.
|
25 |
+
"""
|
26 |
+
if not SERPAPI_API_KEY:
|
27 |
+
return "Errore: La variabile d'ambiente SERPAPI_API_KEY non è impostata."
|
28 |
+
|
29 |
+
params = {
|
30 |
+
"engine": "google",
|
31 |
+
"q": query,
|
32 |
+
"api_key": SERPAPI_API_KEY,
|
33 |
+
"num": num_results,
|
34 |
+
"gl": gl,
|
35 |
+
"hl": hl
|
36 |
+
}
|
37 |
+
search = GoogleSearch(params)
|
38 |
+
results = search.get_dict()
|
39 |
+
organic_results = results.get("organic_results", [])
|
40 |
+
|
41 |
+
if not organic_results:
|
42 |
+
return f"Nessun risultato trovato per '{query}'."
|
43 |
+
|
44 |
+
formatted_results = "\n\n".join([f"Title: {res.get('title')}\nLink: {res.get('link')}\nSnippet: {res.get('snippet')}" for res in organic_results])
|
45 |
+
return formatted_results
|
46 |
+
|
47 |
+
serpapi_search_tool = Tool(
|
48 |
+
name="serpapi_web_search",
|
49 |
+
func=_serpapi_search,
|
50 |
+
description="Esegue una ricerca sul web utilizzando SerpAPI (Google Search) per trovare informazioni aggiornate. L'input dovrebbe essere la query di ricerca." \
|
51 |
+
" Questo tool ha un costo elevato, pertanto sono da preferire altri tool se disponibili. \
|
52 |
+
Richiamare questo tool soltanto in caso gli altri tool non siano stati soddisfacenti."
|
53 |
+
)
|
tools.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import Tool
|
2 |
+
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
|
3 |
+
import operator
|
4 |
+
|
5 |
+
|
6 |
+
def extract_youtube_transcript(youtube_url: str) -> str:
|
7 |
+
"""
|
8 |
+
Extracts the transcript from a given YouTube video URL.
|
9 |
+
Returns the transcript as a single string or an error message if not found.
|
10 |
+
"""
|
11 |
+
try:
|
12 |
+
video_id = youtube_url.split("v=")[1].split("&")[0]
|
13 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
14 |
+
transcript = " ".join([item['text'] for item in transcript_list])
|
15 |
+
return transcript
|
16 |
+
except NoTranscriptFound:
|
17 |
+
return "Error: No transcript found for this video. It might be disabled or not available in English."
|
18 |
+
except TranscriptsDisabled:
|
19 |
+
return "Error: Transcripts are disabled for this video."
|
20 |
+
except Exception as e:
|
21 |
+
return f"Error extracting transcript: {str(e)}"
|
22 |
+
|
23 |
+
youtube_transcript_tool = Tool(
|
24 |
+
name="youtube_transcript_extractor",
|
25 |
+
func=extract_youtube_transcript,
|
26 |
+
description="Extracts the full transcript from a YouTube video given its URL. Input should be a valid YouTube video URL."
|
27 |
+
)
|
28 |
+
|
29 |
+
def add(a: float, b: float) -> float:
|
30 |
+
"""Adds two numbers."""
|
31 |
+
return operator.add(a, b)
|
32 |
+
|
33 |
+
def subtract(a: float, b: float) -> float:
|
34 |
+
"""Subtracts the second number from the first."""
|
35 |
+
return operator.sub(a, b)
|
36 |
+
|
37 |
+
def multiply(a: float, b: float) -> float:
|
38 |
+
"""Multiplies two numbers."""
|
39 |
+
return operator.mul(a, b)
|
40 |
+
|
41 |
+
def divide(a: float, b: float) -> float:
|
42 |
+
"""Divides the first number by the second. Returns an error message if division by zero."""
|
43 |
+
if b == 0:
|
44 |
+
return "Error: Cannot divide by zero."
|
45 |
+
return operator.truediv(a, b)
|
46 |
+
|
47 |
+
add_tool = Tool(
|
48 |
+
name="calculator_add",
|
49 |
+
func=add,
|
50 |
+
description="Adds two numbers. Input should be two numbers (a, b)."
|
51 |
+
)
|
52 |
+
|
53 |
+
subtract_tool = Tool(
|
54 |
+
name="calculator_subtract",
|
55 |
+
func=subtract,
|
56 |
+
description="Subtracts the second number from the first. Input should be two numbers (a, b)."
|
57 |
+
)
|
58 |
+
|
59 |
+
multiply_tool = Tool(
|
60 |
+
name="calculator_multiply",
|
61 |
+
func=multiply,
|
62 |
+
description="Multiplies two numbers. Input should be two numbers (a, b)."
|
63 |
+
)
|
64 |
+
|
65 |
+
divide_tool = Tool(
|
66 |
+
name="calculator_divide",
|
67 |
+
func=divide,
|
68 |
+
description="Divides the first number by the second. Input should be two numbers (a, b)."
|
69 |
+
)
|
youtube_tools.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import Tool
|
2 |
+
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
|
3 |
+
|
4 |
+
def extract_youtube_transcript(youtube_url: str) -> str:
|
5 |
+
"""
|
6 |
+
Extracts the transcript from a given YouTube video URL.
|
7 |
+
Returns the transcript as a single string or an error message if not found.
|
8 |
+
"""
|
9 |
+
try:
|
10 |
+
video_id = youtube_url.split("v=")[1].split("&")[0]
|
11 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
12 |
+
transcript = " ".join([item['text'] for item in transcript_list])
|
13 |
+
return transcript
|
14 |
+
except NoTranscriptFound:
|
15 |
+
return "Error: No transcript found for this video. It might be disabled or not available in English."
|
16 |
+
except TranscriptsDisabled:
|
17 |
+
return "Error: Transcripts are disabled for this video."
|
18 |
+
except Exception as e:
|
19 |
+
return f"Error extracting transcript: {str(e)}"
|
20 |
+
|
21 |
+
youtube_transcript_tool = Tool(
|
22 |
+
name="youtube_transcript_extractor",
|
23 |
+
func=extract_youtube_transcript,
|
24 |
+
description="Extracts the full transcript from a YouTube video given its URL. Input should be a valid YouTube video URL."
|
25 |
+
)
|