from states.state import AgentState import os # Import the load_dotenv function from the dotenv library from dotenv import load_dotenv from langchain_google_genai import ChatGoogleGenerativeAI from tools.multimodal_tools import extract_text, analyze_image_tool, analyze_audio_tool from tools.math_tools import add, subtract, multiply, divide from tools.search_tools import search_tool, serpapi_search from tools.youtube_tools import extract_youtube_transcript from langfuse.callback import CallbackHandler load_dotenv() # Read your API key from the environment variable or set it manually api_key = os.getenv("GEMINI_API_KEY") langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY") langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY") # Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing) langfuse_handler = CallbackHandler( public_key=langfuse_public_key, secret_key=langfuse_secret_key, host="http://localhost:3000" ) chat = ChatGoogleGenerativeAI( model= "gemini-2.5-pro-preview-05-06", temperature=0, max_retries=2, google_api_key=api_key, thinking_budget= 0 ) tools = [ extract_text, analyze_image_tool, analyze_audio_tool, extract_youtube_transcript, add, subtract, multiply, divide, search_tool ] chat_with_tools = chat.bind_tools(tools) def assistant(state: AgentState): sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \ "Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \ "Your final output needs to be just the string or integer containing the answer, not an array or technical stuff." return { "messages": [chat_with_tools.invoke([sys_msg] + state["messages"])] }