Spaces:
Runtime error
Runtime error
cache bert models (extractive sum)
Browse files
extractive_summarizer/bert_parent.py
CHANGED
|
@@ -1,13 +1,18 @@
|
|
| 1 |
from typing import List, Union
|
| 2 |
|
| 3 |
-
import numpy as np
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
from numpy import ndarray
|
| 6 |
from transformers import (AlbertModel, AlbertTokenizer, BertModel,
|
| 7 |
BertTokenizer, DistilBertModel, DistilBertTokenizer,
|
| 8 |
PreTrainedModel, PreTrainedTokenizer, XLMModel,
|
| 9 |
XLMTokenizer, XLNetModel, XLNetTokenizer)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
class BertParent(object):
|
| 13 |
"""
|
|
@@ -49,8 +54,9 @@ class BertParent(object):
|
|
| 49 |
if custom_model:
|
| 50 |
self.model = custom_model.to(self.device)
|
| 51 |
else:
|
| 52 |
-
self.model = base_model.from_pretrained(
|
| 53 |
-
model, output_hidden_states=True).to(self.device)
|
|
|
|
| 54 |
|
| 55 |
if custom_tokenizer:
|
| 56 |
self.tokenizer = custom_tokenizer
|
|
@@ -59,6 +65,7 @@ class BertParent(object):
|
|
| 59 |
|
| 60 |
self.model.eval()
|
| 61 |
|
|
|
|
| 62 |
def tokenize_input(self, text: str) -> torch.tensor:
|
| 63 |
"""
|
| 64 |
Tokenizes the text input.
|
|
|
|
| 1 |
from typing import List, Union
|
| 2 |
|
|
|
|
| 3 |
import torch
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import numpy as np
|
| 6 |
from numpy import ndarray
|
| 7 |
from transformers import (AlbertModel, AlbertTokenizer, BertModel,
|
| 8 |
BertTokenizer, DistilBertModel, DistilBertTokenizer,
|
| 9 |
PreTrainedModel, PreTrainedTokenizer, XLMModel,
|
| 10 |
XLMTokenizer, XLNetModel, XLNetTokenizer)
|
| 11 |
|
| 12 |
+
@st.cache()
|
| 13 |
+
def load_hf_model(base_model, model_name, device):
|
| 14 |
+
model = base_model.from_pretrained(model_name, output_hidden_states=True).to(device)
|
| 15 |
+
return model
|
| 16 |
|
| 17 |
class BertParent(object):
|
| 18 |
"""
|
|
|
|
| 54 |
if custom_model:
|
| 55 |
self.model = custom_model.to(self.device)
|
| 56 |
else:
|
| 57 |
+
# self.model = base_model.from_pretrained(
|
| 58 |
+
# model, output_hidden_states=True).to(self.device)
|
| 59 |
+
self.model = load_hf_model(base_model, model, self.device)
|
| 60 |
|
| 61 |
if custom_tokenizer:
|
| 62 |
self.tokenizer = custom_tokenizer
|
|
|
|
| 65 |
|
| 66 |
self.model.eval()
|
| 67 |
|
| 68 |
+
|
| 69 |
def tokenize_input(self, text: str) -> torch.tensor:
|
| 70 |
"""
|
| 71 |
Tokenizes the text input.
|