File size: 13,920 Bytes
a6de768
 
 
 
 
 
 
020c81d
 
 
 
 
 
 
a6de768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c81d
 
 
a6de768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c81d
 
a6de768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c81d
 
 
a6de768
020c81d
 
 
 
 
 
 
 
 
 
a6de768
020c81d
a6de768
 
 
020c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
a6de768
 
020c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6de768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6de768
020c81d
 
 
a6de768
 
 
 
020c81d
a6de768
020c81d
a6de768
 
 
020c81d
 
a6de768
 
 
020c81d
 
a6de768
020c81d
 
a6de768
020c81d
 
a6de768
020c81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6de768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020c81d
 
a6de768
 
 
 
020c81d
a6de768
020c81d
 
 
 
 
 
 
a6de768
 
 
020c81d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from game2048 import Game2048

# 检测可用设备
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.xpu.is_available():
    device = torch.device("xpu")
else:
    device = torch.device("cpu")
# 创建游戏实例
game = Game2048(size=4)

# 方块颜色映射(根据数字值)
TILE_COLORS = {
    0: "#cdc1b4",     # 空白格子
    2: "#eee4da",     # 2
    4: "#ede0c8",     # 4
    8: "#f2b179",     # 8
    16: "#f59563",    # 16
    32: "#f67c5f",    # 32
    64: "#f65e3b",    # 64
    128: "#edcf72",   # 128
    256: "#edcc61",   # 256
    512: "#edc850",   # 512
    1024: "#edc53f",  # 1024
    2048: "#edc22e",  # 2048
    4096: "#3c3a32",  # 4096+,
    8192: "#3c3a32",  # 8192+
    16384: "#3c3a32", # 16384+
}

# 文本颜色映射(根据背景深浅)
TEXT_COLORS = {
    0: "#776e65",     # 空白格子
    2: "#776e65",     # 2
    4: "#776e65",     # 4
    8: "#f9f6f2",     # 8+
    16: "#f9f6f2",    # 16+
    32: "#f9f6f2",    # 32+
    64: "#f9f6f2",    # 64+
    128: "#f9f6f2",   # 128+
    256: "#f9f6f2",   # 256+
    512: "#f9f6f2",   # 512+
    1024: "#f9f6f2",  # 1024+
    2048: "#f9f6f2",  # 2048+
    4096: "#f9f6f2",  # 4096+
    8192: "#f9f6f2",  # 8192+
    16384: "#f9f6f2", # 16384+
}

# 定义DQN网络结构(与训练时相同)
class DQN(nn.Module):
    def __init__(self, input_channels, output_size):
        super(DQN, self).__init__()
        self.input_channels = input_channels
        
        # 卷积层
        self.conv1 = nn.Conv2d(input_channels, 128, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        
        # Dueling DQN架构
        # 价值流
        self.value_conv = nn.Conv2d(128, 4, kernel_size=1)
        self.value_fc1 = nn.Linear(4 * 4 * 4, 128)
        self.value_fc2 = nn.Linear(128, 1)
        
        # 优势流
        self.advantage_conv = nn.Conv2d(128, 16, kernel_size=1)
        self.advantage_fc1 = nn.Linear(16 * 4 * 4, 128)
        self.advantage_fc2 = nn.Linear(128, output_size)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        
        # 价值流
        value = F.relu(self.value_conv(x))
        value = value.view(value.size(0), -1)
        value = F.relu(self.value_fc1(value))
        value = self.value_fc2(value)
        
        # 优势流
        advantage = F.relu(self.advantage_conv(x))
        advantage = advantage.view(advantage.size(0), -1)
        advantage = F.relu(self.advantage_fc1(advantage))
        advantage = self.advantage_fc2(advantage)
        
        # 合并价值流和优势流
        q_values = value + advantage - advantage.mean(dim=1, keepdim=True)
        return q_values

# 加载模型(支持CUDA)
def load_model(model_path, device):
    model = DQN(4, 4).to(device)  # 将模型移动到指定设备
    try:
        # 尝试加载模型
        checkpoint = torch.load(model_path, map_location=device)
        
        # 检查检查点是否包含完整的模型状态
        if 'policy_net_state_dict' in checkpoint:
            model.load_state_dict(checkpoint['policy_net_state_dict'])
        else:
            # 如果检查点不包含policy_net_state_dict,尝试直接加载
            model.load_state_dict(checkpoint)
            
        model.eval()
        print(f"模型成功加载到: {device}")
        return model
    except Exception as e:
        print(f"模型加载失败: {e}")
        # 尝试备选模型路径
        alt_path = model_path.replace('_best_tile', '')
        try:
            checkpoint = torch.load(alt_path, map_location=device)
            if 'policy_net_state_dict' in checkpoint:
                model.load_state_dict(checkpoint['policy_net_state_dict'])
            else:
                model.load_state_dict(checkpoint)
            model.eval()
            print(f"备选模型成功加载: {alt_path}")
            return model
        except Exception as e2:
            print(f"备选模型加载失败: {e2}")
            return None

# 尝试加载模型
model_paths = [
    "models/dqn_2048_best_tile.pth",
    "models/dqn_2048.pth",
    "dqn_2048_best_tile.pth",
    "dqn_2048.pth"
]

model = None
for path in model_paths:
    model = load_model(path, device)
    if model:
        break

if not model:
    print("警告: 未加载任何模型,AI功能将不可用")

def render_board(board):
    html = "<div style='background-color:#bbada0; padding:10px; border-radius:6px;'>"
    html += "<table style='border-spacing:10px; border-collapse:separate;'>"
    
    for i in range(game.size):
        html += "<tr>"
        for j in range(game.size):
            value = board[i][j]
            color = TILE_COLORS.get(value, "#3c3a32")  # 默认深色
            text_color = TEXT_COLORS.get(value, "#f9f6f2")  # 默认浅色
            font_size = "36px" if value < 100 else "30px" if value < 1000 else "24px"
            
            html += f"""
            <td style='background-color:{color}; 
                        width:80px; height:80px; 
                        border-radius:4px; 
                        text-align:center; 
                        font-weight:bold; 
                        font-size:{font_size};
                        color:{text_color};'>
                {value if value > 0 else ''}
            </td>
            """
        html += "</tr>"
    
    html += "</table></div>"
    return html

def make_move(direction):
    """执行移动操作并更新界面"""
    direction_names = ["上", "右", "下", "左"]
    
    # 执行移动
    new_board, game_over = game.move(direction)
    
    # 渲染棋盘
    board_html = render_board(new_board)
    
    # 更新状态信息
    status = f"<b>移动方向:</b> {direction_names[direction]}"
    status += f"<br><b>当前分数:</b> {game.score}"
    status += f"<br><b>最大方块:</b> {np.max(game.board)}"
    
    if game.game_over:
        status += "<br><br><div style='color:#ff0000; font-weight:bold;'>游戏结束!</div>"
        status += f"<br><b>最终分数:</b> {game.score}"
    
    return board_html, status

def reset_game():
    """重置游戏"""
    global game
    game = Game2048(size=4)
    board = game.reset()
    
    # 渲染棋盘
    board_html = render_board(board)
    
    # 初始状态信息
    status = "<b>游戏已重置!</b>"
    status += f"<br><b>当前分数:</b> {game.score}"
    status += f"<br><b>最大方块:</b> {np.max(game.board)}"
    
    return board_html, status

def ai_move():
    """使用AI模型进行一步移动"""
    if model is None:
        return render_board(game.board), "<b>错误:</b> 未加载AI模型"
    
    # 获取当前状态
    state = game.get_state()
    
    # 获取有效移动
    valid_moves = game.get_valid_moves()
    if not valid_moves:
        return render_board(game.board), "<b>游戏结束!</b> 没有有效移动"
    
    try:
        # 转换状态为模型输入并移动到设备
        state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
        
        # 模型预测
        with torch.no_grad():
            q_values = model(state_tensor).cpu().numpy().flatten()
        
        # 只考虑有效动作
        valid_q_values = np.full(4, -np.inf)
        for move in valid_moves:
            valid_q_values[move] = q_values[move]
        
        # 选择最佳动作
        action = np.argmax(valid_q_values)
        
        # 执行移动
        direction_names = ["上", "右", "下", "左"]
        new_board, game_over = game.move(action)
        
        # 渲染棋盘
        board_html = render_board(new_board)
        
        # 更新状态信息
        status = f"<b>AI移动方向:</b> {direction_names[action]}"
        status += f"<br><b>当前分数:</b> {game.score}"
        status += f"<br><b>最大方块:</b> {np.max(game.board)}"
        status += f"<br><b>设备:</b> {'GPU' if device.type == 'cuda' else 'CPU'}"
        
        if game.game_over:
            status += "<br><br><div style='color:#ff0000; font-weight:bold;'>游戏结束!</div>"
            status += f"<br><b>最终分数:</b> {game.score}"
        
        return board_html, status
    
    except Exception as e:
        print(f"AI移动出错: {e}")
        return render_board(game.board), f"<b>错误:</b> AI移动失败 - {str(e)}"

# 创建Gradio界面
with gr.Blocks(title="2048游戏", theme="soft") as demo:
    gr.Markdown("# 🎮 2048游戏")
    gr.Markdown(f"当前运行设备: **{'GPU' if device.type == 'cuda' else 'CPU'}**")
    gr.Markdown("使用方向键或下方的按钮移动方块,相同数字的方块相撞时会合并!")
    
    with gr.Row():
        with gr.Column(scale=2):
            board_html = gr.HTML(render_board(game.board))
            status_display = gr.HTML("<b>当前分数:</b> 0<br><b>最大方块:</b> 2")
            
        with gr.Column():
            gr.Markdown("## 手动操作")
            with gr.Row():
                up_btn = gr.Button("上 ↑", elem_id="up-btn")
                left_btn = gr.Button("左 ←", elem_id="left-btn")
            with gr.Row():
                down_btn = gr.Button("下 ↓", elem_id="down-btn")
                right_btn = gr.Button("右 →", elem_id="right-btn")
            with gr.Row():
                reset_btn = gr.Button("🔄 重置游戏", elem_id="reset-btn")
                
            gr.Markdown("## AI操作")
            with gr.Row():
                ai_btn = gr.Button("🤖 AI移动一步", elem_id="ai-btn")
                auto_btn = gr.Button("🚀 连续AI模式", elem_id="auto-btn")
    
    # 连接按钮事件
    up_btn.click(lambda: make_move(0), outputs=[board_html, status_display])
    right_btn.click(lambda: make_move(1), outputs=[board_html, status_display])
    down_btn.click(lambda: make_move(2), outputs=[board_html, status_display])
    left_btn.click(lambda: make_move(3), outputs=[board_html, status_display])
    reset_btn.click(reset_game, outputs=[board_html, status_display])
    ai_btn.click(ai_move, outputs=[board_html, status_display])
    
    # 连续AI模式
    def auto_play():
        """连续AI移动直到游戏结束"""
        if model is None:
            return render_board(game.board), "<b>错误:</b> 未加载AI模型"
        
        moves = 0
        max_moves = 200  # 防止无限循环
        
        while not game.game_over and moves < max_moves:
            # 获取当前状态
            state = game.get_state()
            
            # 获取有效移动
            valid_moves = game.get_valid_moves()
            if not valid_moves:
                break
                
            # 转换状态为模型输入并移动到设备
            state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
            
            # 模型预测
            with torch.no_grad():
                q_values = model(state_tensor).cpu().numpy().flatten()
            
            # 只考虑有效动作
            valid_q_values = np.full(4, -np.inf)
            for move in valid_moves:
                valid_q_values[move] = q_values[move]
            
            # 选择最佳动作
            action = np.argmax(valid_q_values)
            
            # 执行移动
            game.move(action)
            moves += 1
        
        # 渲染棋盘
        board_html = render_board(game.board)
        
        # 更新状态信息
        status = f"<b>连续AI完成!</b>"
        status += f"<br><b>移动次数:</b> {moves}"
        status += f"<br><b>当前分数:</b> {game.score}"
        status += f"<br><b>最大方块:</b> {np.max(game.board)}"
        status += f"<br><b>设备:</b> {'GPU' if device.type == 'cuda' else 'CPU'}"
        
        if game.game_over:
            status += "<br><br><div style='color:#ff0000; font-weight:bold;'>游戏结束!</div>"
            status += f"<br><b>最终分数:</b> {game.score}"
        
        return board_html, status
    
    auto_btn.click(auto_play, outputs=[board_html, status_display])
    
    # 添加键盘快捷键支持
    demo.load(
        fn=None,
        inputs=None,
        outputs=None,
        js="""() => {
            document.addEventListener('keydown', function(e) {
                if (e.key === 'ArrowUp') {
                    document.getElementById('up-btn').click();
                } else if (e.key === 'ArrowRight') {
                    document.getElementById('right-btn').click();
                } else if (e.key === 'ArrowDown') {
                    document.getElementById('down-btn').click();
                } else if (e.key === 'ArrowLeft') {
                    document.getElementById('left-btn').click();
                } else if (e.key === 'r' || e.key === 'R') {
                    document.getElementById('reset-btn').click();
                } else if (e.key === 'a' || e.key === 'A') {
                    document.getElementById('ai-btn').click();
                } else if (e.key === 's' || e.key === 'S') {
                    document.getElementById('auto-btn').click();
                }
            });
        }"""
    )
    
    gr.Markdown("### 📚 使用说明")
    gr.Markdown("1. 使用方向键或下方的按钮移动方块")
    gr.Markdown("2. 相同数字的方块相撞时会合并")
    gr.Markdown("3. **快捷键说明**:")
    gr.Markdown("   - ↑/↓/←/→: 移动方块")
    gr.Markdown("   - R: 重置游戏")
    gr.Markdown("   - A: AI移动一步")
    gr.Markdown("   - S: 连续AI模式(自动玩到游戏结束)")

# 启动界面
if __name__ == "__main__":
    demo.launch()