Spaces:
Running
Running
File size: 6,901 Bytes
ca0a8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import numpy as np
import random
class Game2048:
def __init__(self, size=4):
self.size = size
self.reset()
def reset(self):
"""重置游戏状态"""
self.board = np.zeros((self.size, self.size), dtype=np.int32)
self.score = 0
self.add_tile()
self.add_tile()
self.game_over = False
return self.board.copy()
def add_tile(self):
"""在随机空位置添加新方块(90%概率为2,10%概率为4)"""
empty_cells = []
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] == 0:
empty_cells.append((i, j))
if empty_cells:
i, j = random.choice(empty_cells)
self.board[i][j] = 2 if random.random() < 0.9 else 4
def move(self, direction):
"""
执行移动操作
0: 上, 1: 右, 2: 下, 3: 左
返回: (新棋盘状态, 游戏是否结束)
"""
moved = False
# 根据方向执行移动
if direction == 0: # 上
for j in range(self.size):
column = self.board[:, j].copy()
new_column, moved_col = self.slide(column)
if moved_col:
moved = True
self.board[:, j] = new_column
elif direction == 1: # 右
for i in range(self.size):
row = self.board[i, :].copy()[::-1]
new_row, moved_row = self.slide(row)
if moved_row:
moved = True
self.board[i, :] = new_row[::-1]
elif direction == 2: # 下
for j in range(self.size):
column = self.board[::-1, j].copy()
new_column, moved_col = self.slide(column)
if moved_col:
moved = True
self.board[:, j] = new_column[::-1]
elif direction == 3: # 左
for i in range(self.size):
row = self.board[i, :].copy()
new_row, moved_row = self.slide(row)
if moved_row:
moved = True
self.board[i, :] = new_row
# 如果发生了移动,添加新方块并检查游戏结束
if moved:
self.add_tile()
self.check_game_over()
return self.board.copy(), self.game_over
def slide(self, line):
"""处理单行/列的移动和合并逻辑"""
non_zero = line[line != 0]
new_line = np.zeros_like(line)
idx = 0
score_inc = 0
moved = False
# 检查是否移动
if not np.array_equal(non_zero, line[:len(non_zero)]):
moved = True
# 合并相同数字
i = 0
while i < len(non_zero):
if i + 1 < len(non_zero) and non_zero[i] == non_zero[i+1]:
new_val = non_zero[i] * 2
new_line[idx] = new_val
score_inc += new_val
i += 2
idx += 1
else:
new_line[idx] = non_zero[i]
i += 1
idx += 1
self.score += score_inc
return new_line, moved or (score_inc > 0)
def check_game_over(self):
"""检查游戏是否结束"""
# 检查是否还有空格子
if np.any(self.board == 0):
self.game_over = False
return
# 检查水平和垂直方向是否有可合并的方块
for i in range(self.size):
for j in range(self.size - 1):
if self.board[i][j] == self.board[i][j+1]:
self.game_over = False
return
for j in range(self.size):
for i in range(self.size - 1):
if self.board[i][j] == self.board[i+1][j]:
self.game_over = False
return
self.game_over = True
def get_valid_moves(self):
"""获取当前所有有效移动方向"""
valid_moves = []
# 检查上移是否有效
for j in range(self.size):
column = self.board[:, j].copy()
new_column, _ = self.slide(column)
if not np.array_equal(new_column, self.board[:, j]):
valid_moves.append(0)
break
# 检查右移是否有效
for i in range(self.size):
row = self.board[i, :].copy()[::-1]
new_row, _ = self.slide(row)
if not np.array_equal(new_row[::-1], self.board[i, :]):
valid_moves.append(1)
break
# 检查下移是否有效
for j in range(self.size):
column = self.board[::-1, j].copy()
new_column, _ = self.slide(column)
if not np.array_equal(new_column[::-1], self.board[:, j]):
valid_moves.append(2)
break
# 检查左移是否有效
for i in range(self.size):
row = self.board[i, :].copy()
new_row, _ = self.slide(row)
if not np.array_equal(new_row, self.board[i, :]):
valid_moves.append(3)
break
return valid_moves
def get_state(self):
"""获取当前游戏状态表示(用于AI模型)"""
# 创建4个通道的状态表示
state = np.zeros((4, self.size, self.size), dtype=np.float32)
# 通道0: 当前方块值的对数(归一化)
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] > 0:
state[0, i, j] = np.log2(self.board[i][j]) / 16.0 # 支持到65536 (2^16)
# 通道1: 空格子指示器
state[1] = (self.board == 0).astype(np.float32)
# 通道2: 可合并的邻居指示器
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] > 0:
# 检查右侧
if j < self.size - 1 and self.board[i][j] == self.board[i][j+1]:
state[2, i, j] = 1.0
state[2, i, j+1] = 1.0
# 检查下方
if i < self.size - 1 and self.board[i][j] == self.board[i+1][j]:
state[2, i, j] = 1.0
state[2, i+1, j] = 1.0
# 通道3: 最大值位置(归一化)
max_value = np.max(self.board)
if max_value > 0:
max_positions = np.argwhere(self.board == max_value)
for pos in max_positions:
state[3, pos[0], pos[1]] = 1.0
return state |