Spaces:
Running
Running
File size: 10,214 Bytes
a6de768 ca0a8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from game2048 import Game2048
# 创建游戏实例
game = Game2048(size=4)
# 方块颜色映射(根据数字值)
TILE_COLORS = {
0: "#cdc1b4", # 空白格子
2: "#eee4da", # 2
4: "#ede0c8", # 4
8: "#f2b179", # 8
16: "#f59563", # 16
32: "#f67c5f", # 32
64: "#f65e3b", # 64
128: "#edcf72", # 128
256: "#edcc61", # 256
512: "#edc850", # 512
1024: "#edc53f", # 1024
2048: "#edc22e", # 2048
4096: "#3c3a32", # 4096+
}
# 文本颜色映射(根据背景深浅)
TEXT_COLORS = {
0: "#776e65", # 空白格子
2: "#776e65", # 2
4: "#776e65", # 4
8: "#f9f6f2", # 8+
16: "#f9f6f2", # 16+
32: "#f9f6f2", # 32+
64: "#f9f6f2", # 64+
128: "#f9f6f2", # 128+
256: "#f9f6f2", # 256+
512: "#f9f6f2", # 512+
1024: "#f9f6f2", # 1024+
2048: "#f9f6f2", # 2048+
4096: "#f9f6f2", # 4096+
}
# 定义DQN网络结构(与训练时相同)
class DQN(nn.Module):
def __init__(self, input_channels, output_size):
super(DQN, self).__init__()
self.input_channels = input_channels
# 卷积层
self.conv1 = nn.Conv2d(input_channels, 128, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
# Dueling DQN架构
# 价值流
self.value_conv = nn.Conv2d(128, 4, kernel_size=1)
self.value_fc1 = nn.Linear(4 * 4 * 4, 128)
self.value_fc2 = nn.Linear(128, 1)
# 优势流
self.advantage_conv = nn.Conv2d(128, 16, kernel_size=1)
self.advantage_fc1 = nn.Linear(16 * 4 * 4, 128)
self.advantage_fc2 = nn.Linear(128, output_size)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# 价值流
value = F.relu(self.value_conv(x))
value = value.view(value.size(0), -1)
value = F.relu(self.value_fc1(value))
value = self.value_fc2(value)
# 优势流
advantage = F.relu(self.advantage_conv(x))
advantage = advantage.view(advantage.size(0), -1)
advantage = F.relu(self.advantage_fc1(advantage))
advantage = self.advantage_fc2(advantage)
# 合并价值流和优势流
q_values = value + advantage - advantage.mean(dim=1, keepdim=True)
return q_values
# 加载模型
def load_model(model_path):
model = DQN(4, 4) # 输入通道4,输出动作4个
try:
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['policy_net_state_dict'])
model.eval()
print("模型加载成功")
return model
except Exception as e:
print(f"模型加载失败: {e}")
return None
# 尝试加载模型
model_path = "dqn_2048_best_tile.pth"
model = load_model(model_path)
def render_board(board):
html = "<div style='background-color:#bbada0; padding:10px; border-radius:6px;'>"
html += "<table style='border-spacing:10px; border-collapse:separate;'>"
for i in range(game.size):
html += "<tr>"
for j in range(game.size):
value = board[i][j]
color = TILE_COLORS.get(value, "#3c3a32") # 默认深色
text_color = TEXT_COLORS.get(value, "#f9f6f2") # 默认浅色
font_size = "36px" if value < 100 else "30px" if value < 1000 else "24px"
html += f"""
<td style='background-color:{color};
width:80px; height:80px;
border-radius:4px;
text-align:center;
font-weight:bold;
font-size:{font_size};
color:{text_color};'>
{value if value > 0 else ''}
</td>
"""
html += "</tr>"
html += "</table></div>"
return html
def make_move(direction):
"""执行移动操作并更新界面"""
direction_names = ["上", "右", "下", "左"]
# 执行移动
new_board, game_over = game.move(direction)
# 渲染棋盘
board_html = render_board(new_board)
# 更新状态信息
status = f"<b>移动方向:</b> {direction_names[direction]}"
status += f"<br><b>当前分数:</b> {game.score}"
status += f"<br><b>最大方块:</b> {np.max(game.board)}"
if game.game_over:
status += "<br><br><div style='color:#ff0000; font-weight:bold;'>游戏结束!</div>"
status += f"<br><b>最终分数:</b> {game.score}"
return board_html, status
def reset_game():
"""重置游戏"""
global game
game = Game2048(size=4)
board = game.reset()
# 渲染棋盘
board_html = render_board(board)
# 初始状态信息
status = "<b>游戏已重置!</b>"
status += f"<br><b>当前分数:</b> {game.score}"
status += f"<br><b>最大方块:</b> {np.max(game.board)}"
return board_html, status
def ai_move():
"""使用AI模型进行一步移动"""
if model is None:
return render_board(game.board), "<b>错误:</b> 未加载AI模型"
# 获取当前状态
state = game.get_state()
# 获取有效移动
valid_moves = game.get_valid_moves()
if not valid_moves:
return render_board(game.board), "<b>游戏结束!</b> 没有有效移动"
# 转换状态为模型输入
state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0)
# 模型预测
with torch.no_grad():
q_values = model(state_tensor).numpy().flatten()
# 只考虑有效动作
valid_q_values = np.full(4, -np.inf)
for move in valid_moves:
valid_q_values[move] = q_values[move]
# 选择最佳动作
action = np.argmax(valid_q_values)
# 执行移动
direction_names = ["上", "右", "下", "左"]
new_board, game_over = game.move(action)
# 渲染棋盘
board_html = render_board(new_board)
# 更新状态信息
status = f"<b>AI移动方向:</b> {direction_names[action]}"
status += f"<br><b>当前分数:</b> {game.score}"
status += f"<br><b>最大方块:</b> {np.max(game.board)}"
if game.game_over:
status += "<br><br><div style='color:#ff0000; font-weight:bold;'>游戏结束!</div>"
status += f"<br><b>最终分数:</b> {game.score}"
return board_html, status
# 创建Gradio界面
with gr.Blocks(title="2048游戏", theme="soft") as demo:
gr.Markdown("# 🎮 2048游戏")
gr.Markdown("使用方向键或下方的按钮移动方块,相同数字的方块相撞时会合并!")
with gr.Row():
with gr.Column(scale=2):
board_html = gr.HTML(render_board(game.board))
with gr.Row(visible=False):
status_display = gr.HTML("<b>当前分数:</b> 0<br><b>最大方块:</b> 2")
with gr.Column():
gr.Markdown("## 手动操作")
with gr.Row():
gr.Button("上 ↑", elem_id="up-btn").click(
fn=lambda: make_move(0),
outputs=[board_html, status_display]
)
gr.Button("左 ←", elem_id="left-btn").click(
fn=lambda: make_move(3),
outputs=[board_html, status_display]
)
with gr.Row():
gr.Button("下 ↓", elem_id="down-btn").click(
fn=lambda: make_move(2),
outputs=[board_html, status_display]
)
gr.Button("右 →", elem_id="right-btn").click(
fn=lambda: make_move(1),
outputs=[board_html, status_display]
)
with gr.Row():
gr.Button("🔄 重置游戏", elem_id="reset-btn").click(
fn=reset_game,
outputs=[board_html, status_display]
)
with gr.Row():
status_display = gr.HTML("<b>当前分数:</b> 0<br><b>最大方块:</b> 2")
with gr.Column():
gr.Markdown("## AI操作")
gr.Button("🤖 AI移动一步", elem_id="ai-btn").click(
fn=ai_move,
outputs=[board_html, status_display]
)
gr.Markdown("基于DQN神经网络提供支持")
# 添加键盘快捷键支持
demo.load(
fn=None,
inputs=None,
outputs=None,
js="""() => {
document.addEventListener('keydown', function(e) {
if (e.key === 'ArrowUp') {
document.getElementById('up-btn').click();
} else if (e.key === 'ArrowRight') {
document.getElementById('right-btn').click();
} else if (e.key === 'ArrowDown') {
document.getElementById('down-btn').click();
} else if (e.key === 'ArrowLeft') {
document.getElementById('left-btn').click();
} else if (e.key === 'r' || e.key === 'R') {
document.getElementById('reset-btn').click();
} else if (e.key === 'a' || e.key === 'A') {
document.getElementById('ai-btn').click();
}
});
}"""
)
gr.Markdown("### 📚 使用说明")
gr.Markdown("1. 使用方向键或下方的按钮移动方块。")
gr.Markdown("2. 相同数字的方块相撞时会合并。")
gr.Markdown("3. 快捷键说明:上/下/左/右键移动方块,R键重置游戏,A键AI移动一步。")
gr.Markdown("4. 点击 '🤖 AI移动一步' 按钮可以使用AI模型进行一步移动。")
gr.Markdown("5. 游戏结束后,会显示最终分数和最大方块。")
# 启动界面
if __name__ == "__main__":
demo.launch(share=True) |