File size: 30,571 Bytes
ca0a8ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
import warnings

if torch.cuda.is_available():
    device=torch.device("cuda")
elif torch.xpu.is_available():
    device=torch.device("xpu")
else:
    device=torch.device("cpu")
print(f"Using device: {device}")

# 2048游戏环境(改进版)
class Game2048:
    def __init__(self, size=4):
        self.size = size
        self.reset()
    
    def reset(self):
        self.board = np.zeros((self.size, self.size), dtype=np.int32)
        self.score = 0
        self.prev_score = 0
        self.add_tile()
        self.add_tile()
        self.game_over = False
        return self.get_state()
    
    def add_tile(self):
        empty_cells = []
        for i in range(self.size):
            for j in range(self.size):
                if self.board[i][j] == 0:
                    empty_cells.append((i, j))
        
        if empty_cells:
            i, j = random.choice(empty_cells)
            self.board[i][j] = 2 if random.random() < 0.9 else 4
    
    def move(self, direction):
        # 0: 上, 1: 右, 2: 下, 3: 左
        moved = False
        original_board = self.board.copy()
        old_score = self.score
        
        # 根据方向执行移动
        if direction == 0:  # 上
            for j in range(self.size):
                column = self.board[:, j].copy()
                new_column, moved_col = self.slide(column)
                if moved_col:
                    moved = True
                self.board[:, j] = new_column
        
        elif direction == 1:  # 右
            for i in range(self.size):
                row = self.board[i, :].copy()[::-1]
                new_row, moved_row = self.slide(row)
                if moved_row:
                    moved = True
                self.board[i, :] = new_row[::-1]
        
        elif direction == 2:  # 下
            for j in range(self.size):
                column = self.board[::-1, j].copy()
                new_column, moved_col = self.slide(column)
                if moved_col:
                    moved = True
                self.board[:, j] = new_column[::-1]
        
        elif direction == 3:  # 左
            for i in range(self.size):
                row = self.board[i, :].copy()
                new_row, moved_row = self.slide(row)
                if moved_row:
                    moved = True
                self.board[i, :] = new_row
        
        # 如果发生了移动,添加新方块
        if moved:
            self.add_tile()
            self.check_game_over()
        
        reward = self.calculate_reward(old_score, original_board)
        return self.get_state(), reward, self.game_over
    
    def slide(self, line):
        # 移除零并合并相同数字
        non_zero = line[line != 0]
        new_line = np.zeros_like(line)
        idx = 0
        score_inc = 0
        moved = False
        
        # 检查是否移动
        if not np.array_equal(non_zero, line[:len(non_zero)]):
            moved = True
        
        # 合并相同数字
        i = 0
        while i < len(non_zero):
            if i + 1 < len(non_zero) and non_zero[i] == non_zero[i+1]:
                new_val = non_zero[i] * 2
                new_line[idx] = new_val
                score_inc += new_val
                i += 2
                idx += 1
            else:
                new_line[idx] = non_zero[i]
                i += 1
                idx += 1
        
        self.score += score_inc
        return new_line, moved or (score_inc > 0)
    
    def calculate_reward(self, old_score, original_board):
        """改进的奖励函数"""
        # 1. 基本分数奖励
        score_reward = (self.score - old_score) * 0.1
        
        # 2. 空格子数量变化奖励
        empty_before = np.count_nonzero(original_board == 0)
        empty_after = np.count_nonzero(self.board == 0)
        empty_reward = (empty_after - empty_before) * 0.15
        
        # 3. 最大方块奖励
        max_before = np.max(original_board)
        max_after = np.max(self.board)
        max_tile_reward = 0
        if max_after > max_before:
            max_tile_reward = np.log2(max_after) * 0.2
        
        # 4. 合并奖励(鼓励合并)
        merge_reward = 0
        if self.score - old_score > 0:
            merge_reward = np.log2(self.score - old_score) * 0.1
        
        # 5. 单调性惩罚(鼓励有序排列)
        monotonicity_penalty = self.calculate_monotonicity_penalty() * 0.01
        
        # 6. 游戏结束惩罚
        game_over_penalty = 0
        if self.game_over:
            game_over_penalty = -10
        
        # 7. 平滑度奖励(鼓励相邻方块值接近)
        smoothness_reward = self.calculate_smoothness() * 0.01
        
        # 总奖励
        total_reward = (
            score_reward + 
            empty_reward + 
            max_tile_reward + 
            merge_reward + 
            smoothness_reward + 
            monotonicity_penalty + 
            game_over_penalty
        )
        
        return total_reward
    
    def calculate_monotonicity_penalty(self):
        """计算单调性惩罚(值越低越好)"""
        penalty = 0
        for i in range(self.size):
            for j in range(self.size - 1):
                if self.board[i][j] > self.board[i][j+1]:
                    penalty += self.board[i][j] - self.board[i][j+1]
                else:
                    penalty += self.board[i][j+1] - self.board[i][j]
        return penalty
    
    def calculate_smoothness(self):
        """计算平滑度(值越高越好)"""
        smoothness = 0
        for i in range(self.size):
            for j in range(self.size):
                if self.board[i][j] != 0:
                    value = np.log2(self.board[i][j])
                    # 检查右侧邻居
                    if j < self.size - 1 and self.board[i][j+1] != 0:
                        neighbor_value = np.log2(self.board[i][j+1])
                        smoothness -= abs(value - neighbor_value)
                    # 检查下方邻居
                    if i < self.size - 1 and self.board[i+1][j] != 0:
                        neighbor_value = np.log2(self.board[i+1][j])
                        smoothness -= abs(value - neighbor_value)
        return smoothness
    
    def check_game_over(self):
        # 检查是否还有空格子
        if np.any(self.board == 0):
            self.game_over = False
            return
        
        # 检查水平和垂直方向是否有可合并的方块
        for i in range(self.size):
            for j in range(self.size - 1):
                if self.board[i][j] == self.board[i][j+1]:
                    self.game_over = False
                    return
        
        for j in range(self.size):
            for i in range(self.size - 1):
                if self.board[i][j] == self.board[i+1][j]:
                    self.game_over = False
                    return
        
        self.game_over = True
    
    def get_state(self):
        """改进的状态表示"""
        # 创建4个通道的状态表示
        state = np.zeros((4, self.size, self.size), dtype=np.float32)
        
        # 通道0: 当前方块值的对数(归一化)
        for i in range(self.size):
            for j in range(self.size):
                if self.board[i][j] > 0:
                    state[0, i, j] = np.log2(self.board[i][j]) / 16.0  # 支持到65536 (2^16)
        
        # 通道1: 空格子指示器
        state[1] = (self.board == 0).astype(np.float32)
        
        # 通道2: 可合并的邻居指示器
        for i in range(self.size):
            for j in range(self.size):
                if self.board[i][j] > 0:
                    # 检查右侧
                    if j < self.size - 1 and self.board[i][j] == self.board[i][j+1]:
                        state[2, i, j] = 1.0
                        state[2, i, j+1] = 1.0
                    # 检查下方
                    if i < self.size - 1 and self.board[i][j] == self.board[i+1][j]:
                        state[2, i, j] = 1.0
                        state[2, i+1, j] = 1.0
        
        # 通道3: 最大值位置(归一化)
        max_value = np.max(self.board)
        if max_value > 0:
            max_positions = np.argwhere(self.board == max_value)
            for pos in max_positions:
                state[3, pos[0], pos[1]] = 1.0
        
        return state
    
    def get_valid_moves(self):
        """更高效的有效移动检测"""
        valid_moves = []
        #test_board = np.zeros_like(self.board)
        
        # 检查上移是否有效
        for j in range(self.size):
            column = self.board[:, j].copy()
            new_column, _ = self.slide(column)
            if not np.array_equal(new_column, self.board[:, j]):
                valid_moves.append(0)
                break
        
        # 检查右移是否有效
        for i in range(self.size):
            row = self.board[i, :].copy()[::-1]
            new_row, _ = self.slide(row)
            if not np.array_equal(new_row[::-1], self.board[i, :]):
                valid_moves.append(1)
                break
        
        # 检查下移是否有效
        for j in range(self.size):
            column = self.board[::-1, j].copy()
            new_column, _ = self.slide(column)
            if not np.array_equal(new_column[::-1], self.board[:, j]):
                valid_moves.append(2)
                break
        
        # 检查左移是否有效
        for i in range(self.size):
            row = self.board[i, :].copy()
            new_row, _ = self.slide(row)
            if not np.array_equal(new_row, self.board[i, :]):
                valid_moves.append(3)
                break
        
        return valid_moves

# 改进的深度Q网络(使用Dueling DQN架构)
class DQN(nn.Module):
    def __init__(self, input_channels, output_size):
        super(DQN, self).__init__()
        self.input_channels = input_channels
        
        # 卷积层
        self.conv1 = nn.Conv2d(input_channels, 128, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        
        # Dueling DQN架构
        # 价值流
        self.value_conv = nn.Conv2d(128, 4, kernel_size=1)
        self.value_fc1 = nn.Linear(4 * 4 * 4, 128)
        self.value_fc2 = nn.Linear(128, 1)
        
        # 优势流
        self.advantage_conv = nn.Conv2d(128, 16, kernel_size=1)
        self.advantage_fc1 = nn.Linear(16 * 4 * 4, 128)
        self.advantage_fc2 = nn.Linear(128, output_size)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        
        # 价值流
        value = F.relu(self.value_conv(x))
        value = value.view(value.size(0), -1)
        value = F.relu(self.value_fc1(value))
        value = self.value_fc2(value)
        
        # 优势流
        advantage = F.relu(self.advantage_conv(x))
        advantage = advantage.view(advantage.size(0), -1)
        advantage = F.relu(self.advantage_fc1(advantage))
        advantage = self.advantage_fc2(advantage)
        
        # 合并价值流和优势流
        q_values = value + advantage - advantage.mean(dim=1, keepdim=True)
        return q_values

# 经验回放缓冲区(带优先级)
class PrioritizedReplayBuffer:
    def __init__(self, capacity, alpha=0.6):
        self.capacity = capacity
        self.alpha = alpha
        self.buffer = []
        self.priorities = np.zeros(capacity)
        self.pos = 0
        self.size = 0
    
    def push(self, state, action, reward, next_state, done):
        # 初始优先级设置为最大优先级
        max_priority = self.priorities.max() if self.buffer else 1.0
        
        if len(self.buffer) < self.capacity:
            self.buffer.append((state, action, reward, next_state, done))
        else:
            self.buffer[self.pos] = (state, action, reward, next_state, done)
        
        self.priorities[self.pos] = max_priority
        self.pos = (self.pos + 1) % self.capacity
        self.size = min(self.size + 1, self.capacity)
    
    def sample(self, batch_size, beta=0.4):
        if self.size == 0:
            return None, None, None
        
        priorities = self.priorities[:self.size]
        probs = priorities ** self.alpha
        probs /= probs.sum()
        
        indices = np.random.choice(self.size, batch_size, p=probs)
        samples = [self.buffer[idx] for idx in indices]
        
        # 计算重要性采样权重
        weights = (self.size * probs[indices]) ** (-beta)
        weights /= weights.max()
        weights = np.array(weights, dtype=np.float32)
        
        states, actions, rewards, next_states, dones = zip(*samples)
        return (
            torch.tensor(np.array(states)), 
            torch.tensor(actions, dtype=torch.long), 
            torch.tensor(rewards, dtype=torch.float),
            torch.tensor(np.array(next_states)),
            torch.tensor(dones, dtype=torch.float),
            indices,
            torch.tensor(weights)
        )
    
    def update_priorities(self, indices, priorities):
        # 确保 priorities 是一个数组
        if isinstance(priorities, np.ndarray) and priorities.ndim == 1:
            for idx, priority in zip(indices, priorities):
                self.priorities[idx] = priority
        else:
            # 处理标量情况(虽然不应该发生)
            if not isinstance(priorities, (list, np.ndarray)):
                priorities = [priorities] * len(indices)
            for idx, priority in zip(indices, priorities):
                self.priorities[idx] = priority
    
    def __len__(self):
        return self.size

# 改进的DQN智能体
class DQNAgent:
    def __init__(self, input_channels, action_size, lr=3e-4, gamma=0.99, 
                 epsilon_start=1.0, epsilon_end=0.01, epsilon_decay=0.999, 
                 target_update_freq=1000, batch_size=128):
        self.input_channels = input_channels
        self.action_size = action_size
        self.gamma = gamma
        self.epsilon = epsilon_start
        self.epsilon_end = epsilon_end
        self.epsilon_decay = epsilon_decay
        self.batch_size = batch_size
        self.target_update_freq = target_update_freq
        
        # 主网络和目标网络
        self.policy_net = DQN(input_channels, action_size).to(device)
        self.target_net = DQN(input_channels, action_size).to(device)
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()
        
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr, weight_decay=1e-5)
        self.memory = PrioritizedReplayBuffer(50000)
        self.steps_done = 0
        self.loss_fn = nn.SmoothL1Loss(reduction='none')
    
    def select_action(self, state, valid_moves):
        self.steps_done += 1
        self.epsilon = max(self.epsilon_end, self.epsilon * self.epsilon_decay)
        
        if random.random() < self.epsilon:
            # 随机选择有效动作
            return random.choice(valid_moves)
        else:
            # 使用策略网络选择动作
            with torch.no_grad():
                state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
                q_values = self.policy_net(state_tensor).cpu().numpy().flatten()
                
                # 只考虑有效动作
                valid_q_values = np.full(self.action_size, -np.inf)
                for move in valid_moves:
                    valid_q_values[move] = q_values[move]
                
                return np.argmax(valid_q_values)
    
    def optimize_model(self, beta=0.4):
        if len(self.memory) < self.batch_size:
            return 0
        
        # 从回放缓冲区采样
        sample = self.memory.sample(self.batch_size, beta)
        if sample is None:
            return 0
            
        states, actions, rewards, next_states, dones, indices, weights = sample
        
        states = states.to(device)
        actions = actions.to(device)
        rewards = rewards.to(device)
        next_states = next_states.to(device)
        dones = dones.to(device)
        weights = weights.to(device)
        
        # 计算当前Q值
        current_q = self.policy_net(states).gather(1, actions.unsqueeze(1)).squeeze()
        
        # 计算目标Q值(Double DQN)
        with torch.no_grad():
            next_actions = self.policy_net(next_states).max(1)[1]
            next_q = self.target_net(next_states).gather(1, next_actions.unsqueeze(1)).squeeze()
            target_q = rewards + (1 - dones) * self.gamma * next_q
        
        # 计算损失
        losses = self.loss_fn(current_q, target_q)
        loss = (losses * weights).mean()
        
        # 更新优先级(使用每个样本的损失绝对值)
        with torch.no_grad():
            priorities = losses.abs().cpu().numpy() + 1e-5
            self.memory.update_priorities(indices, priorities)
        
        # 优化模型
        self.optimizer.zero_grad()
        loss.backward()
        
        # 梯度裁剪
        torch.nn.utils.clip_grad_norm_(self.policy_net.parameters(), 10)
        
        self.optimizer.step()
        
        return loss.item()
    
    def update_target_network(self):
        self.target_net.load_state_dict(self.policy_net.state_dict())
    
    def save_model(self, path):
        torch.save({
            'policy_net_state_dict': self.policy_net.state_dict(),
            'target_net_state_dict': self.target_net.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'epsilon': self.epsilon,
            'steps_done': self.steps_done
        }, path)
    
    def load_model(self, path):
        if not os.path.exists(path):
            print(f"Model file not found: {path}")
            return
            
        try:
            # 尝试使用 weights_only=False 加载模型
            checkpoint = torch.load(path, map_location=device, weights_only=False)
            self.policy_net.load_state_dict(checkpoint['policy_net_state_dict'])
            self.target_net.load_state_dict(checkpoint['target_net_state_dict'])
            self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            self.epsilon = checkpoint['epsilon']
            self.steps_done = checkpoint['steps_done']
            self.policy_net.eval()
            self.target_net.eval()
            print(f"Model loaded successfully from {path}")
        except Exception as e:
            print(f"Error loading model: {e}")
            # 尝试使用旧版加载方式作为备选
            try:
                warnings.warn("Trying legacy load method without weights_only")
                checkpoint = torch.load(path, map_location=device)
                self.policy_net.load_state_dict(checkpoint['policy_net_state_dict'])
                self.target_net.load_state_dict(checkpoint['target_net_state_dict'])
                self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
                self.epsilon = checkpoint['epsilon']
                self.steps_done = checkpoint['steps_done']
                self.policy_net.eval()
                self.target_net.eval()
                print(f"Model loaded successfully using legacy method")
            except Exception as e2:
                print(f"Failed to load model: {e2}")
# 训练函数(带进度记录)
def train_agent(agent, env, episodes=5000, save_path='models/dqn_2048.pth', 
                checkpoint_path='models/checkpoint.pth', resume=False, start_episode=0):
    # 创建保存模型的目录
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    
    # 记录训练指标
    scores = []
    max_tiles = []
    avg_scores = []
    losses = []
    best_score = 0
    best_max_tile = 0
    
    # 如果续训,加载训练状态
    if resume and os.path.exists(checkpoint_path):
        try:
            # 使用 weights_only=False 加载检查点
            checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
            scores = checkpoint['scores']
            max_tiles = checkpoint['max_tiles']
            avg_scores = checkpoint['avg_scores']
            losses = checkpoint['losses']
            best_score = checkpoint.get('best_score', 0)
            best_max_tile = checkpoint.get('best_max_tile', 0)
            print(f"Resuming training from episode {start_episode}...")
        except Exception as e:
            print(f"Error loading checkpoint: {e}")
            print("Starting training from scratch...")
            resume = False
    
    if not resume:
        start_episode = 0
    
    # 使用tqdm显示进度条
    progress_bar = tqdm(range(start_episode, episodes), desc="Training")
    
    for episode in progress_bar:
        state = env.reset()
        total_reward = 0
        done = False
        steps = 0
        episode_loss = 0
        loss_count = 0
        
        while not done:
            valid_moves = env.get_valid_moves()
            if not valid_moves:
                done = True
                continue
                
            action = agent.select_action(state, valid_moves)
            next_state, reward, done = env.move(action)
            total_reward += reward
            
            agent.memory.push(state, action, reward, next_state, done)
            state = next_state
            
            # 优化模型
            loss = agent.optimize_model(beta=min(1.0, episode / 1000))
            if loss > 0:
                episode_loss += loss
                loss_count += 1
            
            # 定期更新目标网络
            if agent.steps_done % agent.target_update_freq == 0:
                agent.update_target_network()
            
            steps += 1
        
        # 记录分数和最大方块
        score = env.score
        max_tile = np.max(env.board)
        scores.append(score)
        max_tiles.append(max_tile)
        
        # 计算平均损失
        avg_loss = episode_loss / loss_count if loss_count > 0 else 0
        losses.append(avg_loss)
        
        # 更新最佳记录
        if score > best_score:
            best_score = score
            agent.save_model(save_path.replace('.pth', '_best_score.pth'))
        if max_tile > best_max_tile:
            best_max_tile = max_tile
            agent.save_model(save_path.replace('.pth', '_best_tile.pth'))
        
        # 计算最近100轮平均分数
        recent_scores = scores[-100:] if len(scores) >= 100 else scores
        avg_score = np.mean(recent_scores)
        avg_scores.append(avg_score)
        
        # 更新进度条描述
        progress_bar.set_description(
            f"Ep {episode+1}/{episodes} | "
            f"Score: {score} (Avg: {avg_score:.1f}) | "
            f"Max Tile: {max_tile} | "
            f"Loss: {avg_loss:.4f} | "
            f"Epsilon: {agent.epsilon:.4f}"
        )
        
        # 定期保存模型和训练状态
        if (episode + 1) % 100 == 0:
            agent.save_model(save_path)
            
            # 保存训练状态
            checkpoint = {
                'scores': scores,
                'max_tiles': max_tiles,
                'avg_scores': avg_scores,
                'losses': losses,
                'best_score': best_score,
                'best_max_tile': best_max_tile,
                'episode': episode + 1,
                'steps_done': agent.steps_done,
                'epsilon': agent.epsilon
            }
            try:
                torch.save(checkpoint, checkpoint_path)
            except Exception as e:
                print(f"Error saving checkpoint: {e}")
            
            # 绘制训练曲线
            if episode > 100:  # 确保有足够的数据
                plt.figure(figsize=(12, 8))
                
                # 分数曲线
                plt.subplot(2, 2, 1)
                plt.plot(scores, label='Score')
                plt.plot(avg_scores, label='Avg Score (100 eps)')
                plt.xlabel('Episode')
                plt.ylabel('Score')
                plt.title('Training Scores')
                plt.legend()
                
                # 最大方块曲线
                plt.subplot(2, 2, 2)
                plt.plot(max_tiles, 'g-')
                plt.xlabel('Episode')
                plt.ylabel('Max Tile')
                plt.title('Max Tile Achieved')
                
                # 损失曲线
                plt.subplot(2, 2, 3)
                plt.plot(losses, 'r-')
                plt.xlabel('Episode')
                plt.ylabel('Loss')
                plt.title('Training Loss')
                
                # 分数分布直方图
                plt.subplot(2, 2, 4)
                plt.hist(scores, bins=20, alpha=0.7)
                plt.xlabel('Score')
                plt.ylabel('Frequency')
                plt.title('Score Distribution')
                
                plt.tight_layout()
                plt.savefig('training_progress.png')
                plt.close()
    
    # 保存最终模型
    agent.save_model(save_path)
    
    return scores, max_tiles, losses
# 推理函数(带可视化)
def play_with_model(agent, env, episodes=3):
    agent.epsilon = 0.001  # 设置很小的epsilon值进行推理
    
    for episode in range(episodes):
        state = env.reset()
        done = False
        steps = 0
        
        print(f"\nEpisode {episode+1}")
        print("Initial Board:")
        print(env.board)
        
        while not done:
            valid_moves = env.get_valid_moves()
            if not valid_moves:
                done = True
                print("No valid moves left!")
                continue
                
            # 选择动作
            with torch.no_grad():
                state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
                q_values = agent.policy_net(state_tensor).cpu().numpy().flatten()
                
                # 只考虑有效动作
                valid_q_values = np.full(env.size, -np.inf)
                for move in valid_moves:
                    valid_q_values[move] = q_values[move]
                
                action = np.argmax(valid_q_values)
            
            # 执行动作
            next_state, reward, done = env.move(action)
            state = next_state
            steps += 1
            
            # 渲染游戏
            print(f"\nStep {steps}: Action {['Up', 'Right', 'Down', 'Left'][action]}")
            print(env.board)
            print(f"Score: {env.score}, Max Tile: {np.max(env.board)}")
            #同时将结果保存至result.txt文件中
            with open("result.txt", "a") as f:
                f.write(f"Episode {episode+1}, Step {steps}, Action {['Up', 'Right', 'Down', 'Left'][action]}, Score: {env.score}, Max Tile: {np.max(env.board)}\n{env.board}\n")
            f.close()

        
        print(f"\nGame Over! Final Score: {env.score}, Max Tile: {np.max(env.board)}")

# 主程序
if __name__ == "__main__":
    args = {"train":0, "resume":0, "play":1, "episodes":50000}
    env = Game2048(size=4)
    input_channels = 4  # 状态表示的通道数
    action_size = 4  # 上、右、下、左
    
    agent = DQNAgent(
        input_channels, 
        action_size,
        lr=1e-4,
        epsilon_decay=0.999,  # 更慢的衰减
        target_update_freq=1000,
        batch_size=256
    )
    
    # 训练模型
    if args.get('train') or args.get('resume'):
        print("Starting training...")
        
        # 如果续训,加载检查点
        start_episode = 0
        checkpoint_path = 'models/checkpoint.pth'
        if args.get('resume') and os.path.exists(checkpoint_path):
            try:
                # 使用 weights_only=False 加载检查点
                checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
                start_episode = checkpoint.get('episode', 0)
                agent.steps_done = checkpoint.get('steps_done', 0)
                agent.epsilon = checkpoint.get('epsilon', agent.epsilon)
            except Exception as e:
                print(f"Error loading checkpoint: {e}")
                print("Starting training from scratch...")
                start_episode = 0
        
        scores, max_tiles, losses = train_agent(
            agent, 
            env, 
            episodes=args.get('episodes'),
            save_path='models/dqn_2048.pth',
            checkpoint_path=checkpoint_path,
            resume=args.get('resume'),
            start_episode=start_episode
        )
        print("Training completed!")
        
        # 绘制最终训练结果
        plt.figure(figsize=(15, 10))
        
        plt.subplot(3, 1, 1)
        plt.plot(scores)
        plt.title('Scores per Episode')
        plt.xlabel('Episode')
        plt.ylabel('Score')
        
        plt.subplot(3, 1, 2)
        plt.plot(max_tiles)
        plt.title('Max Tile per Episode')
        plt.xlabel('Episode')
        plt.ylabel('Max Tile')
        
        plt.subplot(3, 1, 3)
        plt.plot(losses)
        plt.title('Training Loss per Episode')
        plt.xlabel('Episode')
        plt.ylabel('Loss')
        
        plt.tight_layout()
        plt.savefig('final_training_results.png')
        plt.close()
    
    # 加载模型并推理
    if args.get('play'):
        model_path = 'models/dqn_2048_best_tile.pth'
        if not os.path.exists(model_path):
            model_path = 'models/dqn_2048.pth'
        
        if os.path.exists(model_path):
            agent.load_model(model_path)
            print("Playing with trained model...")
            if not os.path.exists("result.txt"):
                play_with_model(agent, env, episodes=1)
            else:
                os.remove("result.txt")            #删除之前记录
                play_with_model(agent, env, episodes=1)

        else:
            print("No trained model found. Please train the model first.")