Spaces:
Running
Running
File size: 30,571 Bytes
ca0a8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
import warnings
if torch.cuda.is_available():
device=torch.device("cuda")
elif torch.xpu.is_available():
device=torch.device("xpu")
else:
device=torch.device("cpu")
print(f"Using device: {device}")
# 2048游戏环境(改进版)
class Game2048:
def __init__(self, size=4):
self.size = size
self.reset()
def reset(self):
self.board = np.zeros((self.size, self.size), dtype=np.int32)
self.score = 0
self.prev_score = 0
self.add_tile()
self.add_tile()
self.game_over = False
return self.get_state()
def add_tile(self):
empty_cells = []
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] == 0:
empty_cells.append((i, j))
if empty_cells:
i, j = random.choice(empty_cells)
self.board[i][j] = 2 if random.random() < 0.9 else 4
def move(self, direction):
# 0: 上, 1: 右, 2: 下, 3: 左
moved = False
original_board = self.board.copy()
old_score = self.score
# 根据方向执行移动
if direction == 0: # 上
for j in range(self.size):
column = self.board[:, j].copy()
new_column, moved_col = self.slide(column)
if moved_col:
moved = True
self.board[:, j] = new_column
elif direction == 1: # 右
for i in range(self.size):
row = self.board[i, :].copy()[::-1]
new_row, moved_row = self.slide(row)
if moved_row:
moved = True
self.board[i, :] = new_row[::-1]
elif direction == 2: # 下
for j in range(self.size):
column = self.board[::-1, j].copy()
new_column, moved_col = self.slide(column)
if moved_col:
moved = True
self.board[:, j] = new_column[::-1]
elif direction == 3: # 左
for i in range(self.size):
row = self.board[i, :].copy()
new_row, moved_row = self.slide(row)
if moved_row:
moved = True
self.board[i, :] = new_row
# 如果发生了移动,添加新方块
if moved:
self.add_tile()
self.check_game_over()
reward = self.calculate_reward(old_score, original_board)
return self.get_state(), reward, self.game_over
def slide(self, line):
# 移除零并合并相同数字
non_zero = line[line != 0]
new_line = np.zeros_like(line)
idx = 0
score_inc = 0
moved = False
# 检查是否移动
if not np.array_equal(non_zero, line[:len(non_zero)]):
moved = True
# 合并相同数字
i = 0
while i < len(non_zero):
if i + 1 < len(non_zero) and non_zero[i] == non_zero[i+1]:
new_val = non_zero[i] * 2
new_line[idx] = new_val
score_inc += new_val
i += 2
idx += 1
else:
new_line[idx] = non_zero[i]
i += 1
idx += 1
self.score += score_inc
return new_line, moved or (score_inc > 0)
def calculate_reward(self, old_score, original_board):
"""改进的奖励函数"""
# 1. 基本分数奖励
score_reward = (self.score - old_score) * 0.1
# 2. 空格子数量变化奖励
empty_before = np.count_nonzero(original_board == 0)
empty_after = np.count_nonzero(self.board == 0)
empty_reward = (empty_after - empty_before) * 0.15
# 3. 最大方块奖励
max_before = np.max(original_board)
max_after = np.max(self.board)
max_tile_reward = 0
if max_after > max_before:
max_tile_reward = np.log2(max_after) * 0.2
# 4. 合并奖励(鼓励合并)
merge_reward = 0
if self.score - old_score > 0:
merge_reward = np.log2(self.score - old_score) * 0.1
# 5. 单调性惩罚(鼓励有序排列)
monotonicity_penalty = self.calculate_monotonicity_penalty() * 0.01
# 6. 游戏结束惩罚
game_over_penalty = 0
if self.game_over:
game_over_penalty = -10
# 7. 平滑度奖励(鼓励相邻方块值接近)
smoothness_reward = self.calculate_smoothness() * 0.01
# 总奖励
total_reward = (
score_reward +
empty_reward +
max_tile_reward +
merge_reward +
smoothness_reward +
monotonicity_penalty +
game_over_penalty
)
return total_reward
def calculate_monotonicity_penalty(self):
"""计算单调性惩罚(值越低越好)"""
penalty = 0
for i in range(self.size):
for j in range(self.size - 1):
if self.board[i][j] > self.board[i][j+1]:
penalty += self.board[i][j] - self.board[i][j+1]
else:
penalty += self.board[i][j+1] - self.board[i][j]
return penalty
def calculate_smoothness(self):
"""计算平滑度(值越高越好)"""
smoothness = 0
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] != 0:
value = np.log2(self.board[i][j])
# 检查右侧邻居
if j < self.size - 1 and self.board[i][j+1] != 0:
neighbor_value = np.log2(self.board[i][j+1])
smoothness -= abs(value - neighbor_value)
# 检查下方邻居
if i < self.size - 1 and self.board[i+1][j] != 0:
neighbor_value = np.log2(self.board[i+1][j])
smoothness -= abs(value - neighbor_value)
return smoothness
def check_game_over(self):
# 检查是否还有空格子
if np.any(self.board == 0):
self.game_over = False
return
# 检查水平和垂直方向是否有可合并的方块
for i in range(self.size):
for j in range(self.size - 1):
if self.board[i][j] == self.board[i][j+1]:
self.game_over = False
return
for j in range(self.size):
for i in range(self.size - 1):
if self.board[i][j] == self.board[i+1][j]:
self.game_over = False
return
self.game_over = True
def get_state(self):
"""改进的状态表示"""
# 创建4个通道的状态表示
state = np.zeros((4, self.size, self.size), dtype=np.float32)
# 通道0: 当前方块值的对数(归一化)
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] > 0:
state[0, i, j] = np.log2(self.board[i][j]) / 16.0 # 支持到65536 (2^16)
# 通道1: 空格子指示器
state[1] = (self.board == 0).astype(np.float32)
# 通道2: 可合并的邻居指示器
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] > 0:
# 检查右侧
if j < self.size - 1 and self.board[i][j] == self.board[i][j+1]:
state[2, i, j] = 1.0
state[2, i, j+1] = 1.0
# 检查下方
if i < self.size - 1 and self.board[i][j] == self.board[i+1][j]:
state[2, i, j] = 1.0
state[2, i+1, j] = 1.0
# 通道3: 最大值位置(归一化)
max_value = np.max(self.board)
if max_value > 0:
max_positions = np.argwhere(self.board == max_value)
for pos in max_positions:
state[3, pos[0], pos[1]] = 1.0
return state
def get_valid_moves(self):
"""更高效的有效移动检测"""
valid_moves = []
#test_board = np.zeros_like(self.board)
# 检查上移是否有效
for j in range(self.size):
column = self.board[:, j].copy()
new_column, _ = self.slide(column)
if not np.array_equal(new_column, self.board[:, j]):
valid_moves.append(0)
break
# 检查右移是否有效
for i in range(self.size):
row = self.board[i, :].copy()[::-1]
new_row, _ = self.slide(row)
if not np.array_equal(new_row[::-1], self.board[i, :]):
valid_moves.append(1)
break
# 检查下移是否有效
for j in range(self.size):
column = self.board[::-1, j].copy()
new_column, _ = self.slide(column)
if not np.array_equal(new_column[::-1], self.board[:, j]):
valid_moves.append(2)
break
# 检查左移是否有效
for i in range(self.size):
row = self.board[i, :].copy()
new_row, _ = self.slide(row)
if not np.array_equal(new_row, self.board[i, :]):
valid_moves.append(3)
break
return valid_moves
# 改进的深度Q网络(使用Dueling DQN架构)
class DQN(nn.Module):
def __init__(self, input_channels, output_size):
super(DQN, self).__init__()
self.input_channels = input_channels
# 卷积层
self.conv1 = nn.Conv2d(input_channels, 128, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
# Dueling DQN架构
# 价值流
self.value_conv = nn.Conv2d(128, 4, kernel_size=1)
self.value_fc1 = nn.Linear(4 * 4 * 4, 128)
self.value_fc2 = nn.Linear(128, 1)
# 优势流
self.advantage_conv = nn.Conv2d(128, 16, kernel_size=1)
self.advantage_fc1 = nn.Linear(16 * 4 * 4, 128)
self.advantage_fc2 = nn.Linear(128, output_size)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# 价值流
value = F.relu(self.value_conv(x))
value = value.view(value.size(0), -1)
value = F.relu(self.value_fc1(value))
value = self.value_fc2(value)
# 优势流
advantage = F.relu(self.advantage_conv(x))
advantage = advantage.view(advantage.size(0), -1)
advantage = F.relu(self.advantage_fc1(advantage))
advantage = self.advantage_fc2(advantage)
# 合并价值流和优势流
q_values = value + advantage - advantage.mean(dim=1, keepdim=True)
return q_values
# 经验回放缓冲区(带优先级)
class PrioritizedReplayBuffer:
def __init__(self, capacity, alpha=0.6):
self.capacity = capacity
self.alpha = alpha
self.buffer = []
self.priorities = np.zeros(capacity)
self.pos = 0
self.size = 0
def push(self, state, action, reward, next_state, done):
# 初始优先级设置为最大优先级
max_priority = self.priorities.max() if self.buffer else 1.0
if len(self.buffer) < self.capacity:
self.buffer.append((state, action, reward, next_state, done))
else:
self.buffer[self.pos] = (state, action, reward, next_state, done)
self.priorities[self.pos] = max_priority
self.pos = (self.pos + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)
def sample(self, batch_size, beta=0.4):
if self.size == 0:
return None, None, None
priorities = self.priorities[:self.size]
probs = priorities ** self.alpha
probs /= probs.sum()
indices = np.random.choice(self.size, batch_size, p=probs)
samples = [self.buffer[idx] for idx in indices]
# 计算重要性采样权重
weights = (self.size * probs[indices]) ** (-beta)
weights /= weights.max()
weights = np.array(weights, dtype=np.float32)
states, actions, rewards, next_states, dones = zip(*samples)
return (
torch.tensor(np.array(states)),
torch.tensor(actions, dtype=torch.long),
torch.tensor(rewards, dtype=torch.float),
torch.tensor(np.array(next_states)),
torch.tensor(dones, dtype=torch.float),
indices,
torch.tensor(weights)
)
def update_priorities(self, indices, priorities):
# 确保 priorities 是一个数组
if isinstance(priorities, np.ndarray) and priorities.ndim == 1:
for idx, priority in zip(indices, priorities):
self.priorities[idx] = priority
else:
# 处理标量情况(虽然不应该发生)
if not isinstance(priorities, (list, np.ndarray)):
priorities = [priorities] * len(indices)
for idx, priority in zip(indices, priorities):
self.priorities[idx] = priority
def __len__(self):
return self.size
# 改进的DQN智能体
class DQNAgent:
def __init__(self, input_channels, action_size, lr=3e-4, gamma=0.99,
epsilon_start=1.0, epsilon_end=0.01, epsilon_decay=0.999,
target_update_freq=1000, batch_size=128):
self.input_channels = input_channels
self.action_size = action_size
self.gamma = gamma
self.epsilon = epsilon_start
self.epsilon_end = epsilon_end
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.target_update_freq = target_update_freq
# 主网络和目标网络
self.policy_net = DQN(input_channels, action_size).to(device)
self.target_net = DQN(input_channels, action_size).to(device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr, weight_decay=1e-5)
self.memory = PrioritizedReplayBuffer(50000)
self.steps_done = 0
self.loss_fn = nn.SmoothL1Loss(reduction='none')
def select_action(self, state, valid_moves):
self.steps_done += 1
self.epsilon = max(self.epsilon_end, self.epsilon * self.epsilon_decay)
if random.random() < self.epsilon:
# 随机选择有效动作
return random.choice(valid_moves)
else:
# 使用策略网络选择动作
with torch.no_grad():
state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
q_values = self.policy_net(state_tensor).cpu().numpy().flatten()
# 只考虑有效动作
valid_q_values = np.full(self.action_size, -np.inf)
for move in valid_moves:
valid_q_values[move] = q_values[move]
return np.argmax(valid_q_values)
def optimize_model(self, beta=0.4):
if len(self.memory) < self.batch_size:
return 0
# 从回放缓冲区采样
sample = self.memory.sample(self.batch_size, beta)
if sample is None:
return 0
states, actions, rewards, next_states, dones, indices, weights = sample
states = states.to(device)
actions = actions.to(device)
rewards = rewards.to(device)
next_states = next_states.to(device)
dones = dones.to(device)
weights = weights.to(device)
# 计算当前Q值
current_q = self.policy_net(states).gather(1, actions.unsqueeze(1)).squeeze()
# 计算目标Q值(Double DQN)
with torch.no_grad():
next_actions = self.policy_net(next_states).max(1)[1]
next_q = self.target_net(next_states).gather(1, next_actions.unsqueeze(1)).squeeze()
target_q = rewards + (1 - dones) * self.gamma * next_q
# 计算损失
losses = self.loss_fn(current_q, target_q)
loss = (losses * weights).mean()
# 更新优先级(使用每个样本的损失绝对值)
with torch.no_grad():
priorities = losses.abs().cpu().numpy() + 1e-5
self.memory.update_priorities(indices, priorities)
# 优化模型
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(self.policy_net.parameters(), 10)
self.optimizer.step()
return loss.item()
def update_target_network(self):
self.target_net.load_state_dict(self.policy_net.state_dict())
def save_model(self, path):
torch.save({
'policy_net_state_dict': self.policy_net.state_dict(),
'target_net_state_dict': self.target_net.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'epsilon': self.epsilon,
'steps_done': self.steps_done
}, path)
def load_model(self, path):
if not os.path.exists(path):
print(f"Model file not found: {path}")
return
try:
# 尝试使用 weights_only=False 加载模型
checkpoint = torch.load(path, map_location=device, weights_only=False)
self.policy_net.load_state_dict(checkpoint['policy_net_state_dict'])
self.target_net.load_state_dict(checkpoint['target_net_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.epsilon = checkpoint['epsilon']
self.steps_done = checkpoint['steps_done']
self.policy_net.eval()
self.target_net.eval()
print(f"Model loaded successfully from {path}")
except Exception as e:
print(f"Error loading model: {e}")
# 尝试使用旧版加载方式作为备选
try:
warnings.warn("Trying legacy load method without weights_only")
checkpoint = torch.load(path, map_location=device)
self.policy_net.load_state_dict(checkpoint['policy_net_state_dict'])
self.target_net.load_state_dict(checkpoint['target_net_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.epsilon = checkpoint['epsilon']
self.steps_done = checkpoint['steps_done']
self.policy_net.eval()
self.target_net.eval()
print(f"Model loaded successfully using legacy method")
except Exception as e2:
print(f"Failed to load model: {e2}")
# 训练函数(带进度记录)
def train_agent(agent, env, episodes=5000, save_path='models/dqn_2048.pth',
checkpoint_path='models/checkpoint.pth', resume=False, start_episode=0):
# 创建保存模型的目录
os.makedirs(os.path.dirname(save_path), exist_ok=True)
# 记录训练指标
scores = []
max_tiles = []
avg_scores = []
losses = []
best_score = 0
best_max_tile = 0
# 如果续训,加载训练状态
if resume and os.path.exists(checkpoint_path):
try:
# 使用 weights_only=False 加载检查点
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
scores = checkpoint['scores']
max_tiles = checkpoint['max_tiles']
avg_scores = checkpoint['avg_scores']
losses = checkpoint['losses']
best_score = checkpoint.get('best_score', 0)
best_max_tile = checkpoint.get('best_max_tile', 0)
print(f"Resuming training from episode {start_episode}...")
except Exception as e:
print(f"Error loading checkpoint: {e}")
print("Starting training from scratch...")
resume = False
if not resume:
start_episode = 0
# 使用tqdm显示进度条
progress_bar = tqdm(range(start_episode, episodes), desc="Training")
for episode in progress_bar:
state = env.reset()
total_reward = 0
done = False
steps = 0
episode_loss = 0
loss_count = 0
while not done:
valid_moves = env.get_valid_moves()
if not valid_moves:
done = True
continue
action = agent.select_action(state, valid_moves)
next_state, reward, done = env.move(action)
total_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
# 优化模型
loss = agent.optimize_model(beta=min(1.0, episode / 1000))
if loss > 0:
episode_loss += loss
loss_count += 1
# 定期更新目标网络
if agent.steps_done % agent.target_update_freq == 0:
agent.update_target_network()
steps += 1
# 记录分数和最大方块
score = env.score
max_tile = np.max(env.board)
scores.append(score)
max_tiles.append(max_tile)
# 计算平均损失
avg_loss = episode_loss / loss_count if loss_count > 0 else 0
losses.append(avg_loss)
# 更新最佳记录
if score > best_score:
best_score = score
agent.save_model(save_path.replace('.pth', '_best_score.pth'))
if max_tile > best_max_tile:
best_max_tile = max_tile
agent.save_model(save_path.replace('.pth', '_best_tile.pth'))
# 计算最近100轮平均分数
recent_scores = scores[-100:] if len(scores) >= 100 else scores
avg_score = np.mean(recent_scores)
avg_scores.append(avg_score)
# 更新进度条描述
progress_bar.set_description(
f"Ep {episode+1}/{episodes} | "
f"Score: {score} (Avg: {avg_score:.1f}) | "
f"Max Tile: {max_tile} | "
f"Loss: {avg_loss:.4f} | "
f"Epsilon: {agent.epsilon:.4f}"
)
# 定期保存模型和训练状态
if (episode + 1) % 100 == 0:
agent.save_model(save_path)
# 保存训练状态
checkpoint = {
'scores': scores,
'max_tiles': max_tiles,
'avg_scores': avg_scores,
'losses': losses,
'best_score': best_score,
'best_max_tile': best_max_tile,
'episode': episode + 1,
'steps_done': agent.steps_done,
'epsilon': agent.epsilon
}
try:
torch.save(checkpoint, checkpoint_path)
except Exception as e:
print(f"Error saving checkpoint: {e}")
# 绘制训练曲线
if episode > 100: # 确保有足够的数据
plt.figure(figsize=(12, 8))
# 分数曲线
plt.subplot(2, 2, 1)
plt.plot(scores, label='Score')
plt.plot(avg_scores, label='Avg Score (100 eps)')
plt.xlabel('Episode')
plt.ylabel('Score')
plt.title('Training Scores')
plt.legend()
# 最大方块曲线
plt.subplot(2, 2, 2)
plt.plot(max_tiles, 'g-')
plt.xlabel('Episode')
plt.ylabel('Max Tile')
plt.title('Max Tile Achieved')
# 损失曲线
plt.subplot(2, 2, 3)
plt.plot(losses, 'r-')
plt.xlabel('Episode')
plt.ylabel('Loss')
plt.title('Training Loss')
# 分数分布直方图
plt.subplot(2, 2, 4)
plt.hist(scores, bins=20, alpha=0.7)
plt.xlabel('Score')
plt.ylabel('Frequency')
plt.title('Score Distribution')
plt.tight_layout()
plt.savefig('training_progress.png')
plt.close()
# 保存最终模型
agent.save_model(save_path)
return scores, max_tiles, losses
# 推理函数(带可视化)
def play_with_model(agent, env, episodes=3):
agent.epsilon = 0.001 # 设置很小的epsilon值进行推理
for episode in range(episodes):
state = env.reset()
done = False
steps = 0
print(f"\nEpisode {episode+1}")
print("Initial Board:")
print(env.board)
while not done:
valid_moves = env.get_valid_moves()
if not valid_moves:
done = True
print("No valid moves left!")
continue
# 选择动作
with torch.no_grad():
state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device)
q_values = agent.policy_net(state_tensor).cpu().numpy().flatten()
# 只考虑有效动作
valid_q_values = np.full(env.size, -np.inf)
for move in valid_moves:
valid_q_values[move] = q_values[move]
action = np.argmax(valid_q_values)
# 执行动作
next_state, reward, done = env.move(action)
state = next_state
steps += 1
# 渲染游戏
print(f"\nStep {steps}: Action {['Up', 'Right', 'Down', 'Left'][action]}")
print(env.board)
print(f"Score: {env.score}, Max Tile: {np.max(env.board)}")
#同时将结果保存至result.txt文件中
with open("result.txt", "a") as f:
f.write(f"Episode {episode+1}, Step {steps}, Action {['Up', 'Right', 'Down', 'Left'][action]}, Score: {env.score}, Max Tile: {np.max(env.board)}\n{env.board}\n")
f.close()
print(f"\nGame Over! Final Score: {env.score}, Max Tile: {np.max(env.board)}")
# 主程序
if __name__ == "__main__":
args = {"train":0, "resume":0, "play":1, "episodes":50000}
env = Game2048(size=4)
input_channels = 4 # 状态表示的通道数
action_size = 4 # 上、右、下、左
agent = DQNAgent(
input_channels,
action_size,
lr=1e-4,
epsilon_decay=0.999, # 更慢的衰减
target_update_freq=1000,
batch_size=256
)
# 训练模型
if args.get('train') or args.get('resume'):
print("Starting training...")
# 如果续训,加载检查点
start_episode = 0
checkpoint_path = 'models/checkpoint.pth'
if args.get('resume') and os.path.exists(checkpoint_path):
try:
# 使用 weights_only=False 加载检查点
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
start_episode = checkpoint.get('episode', 0)
agent.steps_done = checkpoint.get('steps_done', 0)
agent.epsilon = checkpoint.get('epsilon', agent.epsilon)
except Exception as e:
print(f"Error loading checkpoint: {e}")
print("Starting training from scratch...")
start_episode = 0
scores, max_tiles, losses = train_agent(
agent,
env,
episodes=args.get('episodes'),
save_path='models/dqn_2048.pth',
checkpoint_path=checkpoint_path,
resume=args.get('resume'),
start_episode=start_episode
)
print("Training completed!")
# 绘制最终训练结果
plt.figure(figsize=(15, 10))
plt.subplot(3, 1, 1)
plt.plot(scores)
plt.title('Scores per Episode')
plt.xlabel('Episode')
plt.ylabel('Score')
plt.subplot(3, 1, 2)
plt.plot(max_tiles)
plt.title('Max Tile per Episode')
plt.xlabel('Episode')
plt.ylabel('Max Tile')
plt.subplot(3, 1, 3)
plt.plot(losses)
plt.title('Training Loss per Episode')
plt.xlabel('Episode')
plt.ylabel('Loss')
plt.tight_layout()
plt.savefig('final_training_results.png')
plt.close()
# 加载模型并推理
if args.get('play'):
model_path = 'models/dqn_2048_best_tile.pth'
if not os.path.exists(model_path):
model_path = 'models/dqn_2048.pth'
if os.path.exists(model_path):
agent.load_model(model_path)
print("Playing with trained model...")
if not os.path.exists("result.txt"):
play_with_model(agent, env, episodes=1)
else:
os.remove("result.txt") #删除之前记录
play_with_model(agent, env, episodes=1)
else:
print("No trained model found. Please train the model first.") |