Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
|
4 |
+
# 题目列表
|
5 |
+
questions = [
|
6 |
+
"1. 37^(-42)=",
|
7 |
+
"2. lim_{x→0} x³/(tanx - x)=",
|
8 |
+
"3. cos x = x 的实根为 x=",
|
9 |
+
"4. f(x)=(x-1)e^(x+1)+√(2x)+1/x-ln²x 的最小值为",
|
10 |
+
"5. f(x)=x/6 + sinx/x 的极值点数量为",
|
11 |
+
"6. y=(x-e)e^x+ln²(x+1)-√(x+1) 在(0,e1)处的切线在x轴上的截距为",
|
12 |
+
"7. 点(1, 0)关于直线5x-2y+3=0的对称点为",
|
13 |
+
"8. (2+3i)^7的虚部为",
|
14 |
+
"9. arg(3+7i)/(9-4i)=(弧度制)",
|
15 |
+
"10. 5!11! mod 998244353=",
|
16 |
+
"11. C₃₇¹⁵=",
|
17 |
+
"12. (x+2)^5除以x²+x+1的商(忽略余式)为",
|
18 |
+
"13. 设f(x)=x⁴e^(x²)则f^(4)(x)/e^(x²)展开后x⁴的系数为",
|
19 |
+
"14. 102233201和123456789的最大公约数为",
|
20 |
+
"15. 2025的所有因数之和为",
|
21 |
+
"16. ∑_{n=1}^∞ n^(-n)=",
|
22 |
+
"17. ∫₀¹x^(-x)dx=",
|
23 |
+
"18. ∑_{n=1}^{25}∏_{k=1}^n(1+1/k²)=",
|
24 |
+
"19. (11,45,14)×(19,198,10)=",
|
25 |
+
"20. 以(−2,−1,−1),(−1,1,3),(2,−4,1),(2,2,0)为顶点的四面体的体积为",
|
26 |
+
"21. 点(1,0)到y=arctanx的距离为",
|
27 |
+
"22. 5¹²+8¹²的所有质因数之和为",
|
28 |
+
"23. 因式分解:x⁵-6x⁴+12x³-8x²-7x-1=",
|
29 |
+
"24. 因式分解:a³b-3a³+a²b²+2ab²-6ab+2b³=",
|
30 |
+
"25. √1,√2,√3,…,√2025的方差为",
|
31 |
+
"26. 过(−2,−1),(−1,1),(0,2),(1,−2),(3,0)的二次曲线的离心率为",
|
32 |
+
"27. x³-3x-5=0的复数根的实部为",
|
33 |
+
"28. 已知六点(−2,−27),(−1,13),(0,5),(1,3),(2,−11),(3,−7),用最小二乘法拟合直线的相关系数为",
|
34 |
+
"29. 以(−1,−1),(0,5),(6,2)为顶点的三角形外接圆半径为 其垂心坐标为",
|
35 |
+
"30. (x+2)^4(3x²-5)(x²-6x-1)的展开式中x⁴的系数为",
|
36 |
+
"31. 设X~N(0,0.5²),则P(-0.2≤X≤0.3)=",
|
37 |
+
"32. 曲线y=2^x-x²(x∈[-2,4])的长度为",
|
38 |
+
"33. 椭圆x²/5+y²/2=1的周长为",
|
39 |
+
"34. 曲线ρ=1-sinθ在点(1,0)处的曲率为",
|
40 |
+
"35. 曲线2x²+y²-5y+4=0和x²+2xy-3y²-2=0的所有公切线斜率之积为",
|
41 |
+
"36. (13579 BD)₁₅转换为10进制是",
|
42 |
+
"37. f(x)=1/(1-x-x²)在x=0处的泰勒展开的前6项为",
|
43 |
+
"38. [2025,5202]中的质数数量为",
|
44 |
+
"39. 已知a₁=2,aₙ₊₁=aₙ-1/aₙ,则a₂₀₂₅=",
|
45 |
+
"40. 已知a₁=2,a₂=3,aₙ₊₂=aₙ₊₁-1/aₙ,则a₂₀₂₅=",
|
46 |
+
"41. 冰雹猜想:从27开始,迭代得到1的最少次数为",
|
47 |
+
"42. 已知a₁=0,a₂=1,aₙ₊₂=(n+1)(aₙ+aₙ₊₁),则a₄₀₉₆ mod 998244353=",
|
48 |
+
"43. 已知f²(x)f'(x)=xe^x,f(2)=3,则f(0)=",
|
49 |
+
"44. 已知某分子和分母均小于1000的分数约等于0.294663573085847,则该分数为",
|
50 |
+
"45. 满足2ⁿ中不出现重复数字的最大正整数n为",
|
51 |
+
"46. 已知a^a+b^b+c^c+d^d=abcd(abcd为1~9的正整数),则abcd=",
|
52 |
+
"47. 100! mod 998244353=",
|
53 |
+
"48. √(eπ)小数点后第37位是",
|
54 |
+
"49. 已知f''(x)=2f(x)+x,f(0)=2,f'(0)=-1/2,则f(1)=",
|
55 |
+
"50. 3^(4^5)的各位数字之和为"
|
56 |
+
]
|
57 |
+
|
58 |
+
# 答案列表(已按题目顺序整理并统一格式)
|
59 |
+
answers = [
|
60 |
+
"1.3662e-66", # 1
|
61 |
+
"3", # 2
|
62 |
+
"0.73909", # 3
|
63 |
+
"0.08027", # 4
|
64 |
+
"4", # 5
|
65 |
+
"-1.6762", # 6
|
66 |
+
"(-1.7586,1.1034)", # 7
|
67 |
+
"4449", # 8
|
68 |
+
"1.5841", # 9
|
69 |
+
"797038588", # 10
|
70 |
+
"9364199760", # 11
|
71 |
+
"x³+9x²+30x+41", # 12
|
72 |
+
"492", # 13
|
73 |
+
"3607", # 14
|
74 |
+
"3751", # 15
|
75 |
+
"1.2913", # 16
|
76 |
+
"1.2913", # 17
|
77 |
+
"81.672", # 18
|
78 |
+
"(-2322,156,1323)", # 19
|
79 |
+
"15.833", # 20
|
80 |
+
"0.67234", # 21
|
81 |
+
"12691", # 22
|
82 |
+
"(x²-3x-1)(x³-3x²+4x+1)", # 23
|
83 |
+
"(a²+2b)(ab-3a+b²)", # 24
|
84 |
+
"112.34", # 25
|
85 |
+
"0.84984", # 26
|
86 |
+
"-1.1395", # 27
|
87 |
+
"0.09798", # 28
|
88 |
+
"3.9841 (0.92308,2.8462)", # 29
|
89 |
+
"-475", # 30
|
90 |
+
"0.38117", # 31
|
91 |
+
"10.750", # 32
|
92 |
+
"11.613", # 33
|
93 |
+
"1.0607", # 34
|
94 |
+
"176", # 35
|
95 |
+
"13947703", # 36
|
96 |
+
"1+x+2x²+3x³+5x⁴+8x⁵", # 37
|
97 |
+
"386", # 38
|
98 |
+
"-35.709", # 39
|
99 |
+
"-125.93", # 40
|
100 |
+
"111", # 41
|
101 |
+
"641190802", # 42
|
102 |
+
"1.2238", # 43
|
103 |
+
"127/431", # 44
|
104 |
+
"29", # 45
|
105 |
+
"3435", # 46
|
106 |
+
"35305197", # 47
|
107 |
+
"3", # 48
|
108 |
+
"3.8564", # 49
|
109 |
+
"2250" # 50
|
110 |
+
]
|
111 |
+
|
112 |
+
def verify_answers(*user_answers):
|
113 |
+
"""验证用户答案并返回评分结果"""
|
114 |
+
results = []
|
115 |
+
score = 0
|
116 |
+
for idx, (user_ans, correct_ans) in enumerate(zip(user_answers, answers)):
|
117 |
+
is_correct = False
|
118 |
+
user_ans = str(user_ans).strip()
|
119 |
+
|
120 |
+
# 数值型答案验证(保留五位有效数字)
|
121 |
+
if re.match(r'^-?\d+\.\d+e?-?\d*$', correct_ans) or re.match(r'^-?\d+\.\d+$', correct_ans):
|
122 |
+
try:
|
123 |
+
# 统一科学计数法格式
|
124 |
+
user_num = float(user_ans.replace('×10^', 'e').replace('^', 'e'))
|
125 |
+
correct_num = float(correct_ans.replace('×10^', 'e').replace('^', 'e'))
|
126 |
+
# 计算有效数字位数
|
127 |
+
sig_figs = 5 - (0 if correct_num == 0 else len(str(int(abs(correct_num)))))
|
128 |
+
user_rounded = round(user_num, sig_figs) if sig_figs > 0 else int(round(user_num))
|
129 |
+
correct_rounded = round(correct_num, sig_figs) if sig_figs > 0 else int(round(correct_num))
|
130 |
+
is_correct = abs(user_rounded - correct_rounded) < 1e-4
|
131 |
+
except:
|
132 |
+
pass
|
133 |
+
|
134 |
+
# 整数答案验证
|
135 |
+
elif correct_ans.isdigit() and user_ans.isdigit():
|
136 |
+
is_correct = user_ans == correct_ans
|
137 |
+
|
138 |
+
# 向量/坐标答案验证(忽略空格和中英文符号)
|
139 |
+
elif correct_ans.startswith('(') and correct_ans.endswith(')'):
|
140 |
+
user_clean = user_ans.replace(' ', '').replace(',', ',').lower()
|
141 |
+
correct_clean = correct_ans.replace(' ', '').replace(',', ',').lower()
|
142 |
+
is_correct = user_clean == correct_clean
|
143 |
+
|
144 |
+
# 多项式/因式分解答案验证(忽略空格和次方符号)
|
145 |
+
elif 'x' in correct_ans:
|
146 |
+
user_clean = user_ans.replace(' ', '').replace('^', '').lower()
|
147 |
+
correct_clean = correct_ans.replace(' ', '').replace('^', '').lower()
|
148 |
+
is_correct = user_clean == correct_clean
|
149 |
+
|
150 |
+
# 分数答案验证
|
151 |
+
elif '/' in correct_ans:
|
152 |
+
is_correct = user_ans == correct_ans
|
153 |
+
|
154 |
+
# 纯文本答案验证
|
155 |
+
else:
|
156 |
+
is_correct = user_ans == correct_ans
|
157 |
+
|
158 |
+
# 生成结果反馈
|
159 |
+
if is_correct:
|
160 |
+
results.append(f"✅ 题目 {idx+1} 正确!")
|
161 |
+
score += 1
|
162 |
+
else:
|
163 |
+
results.append(f"❌ 题目 {idx+1} 错误,正确答案:{correct_ans}")
|
164 |
+
|
165 |
+
results.append(f"------------------------\n总分:{score}/{len(questions)}")
|
166 |
+
return "\n".join(results)
|
167 |
+
|
168 |
+
# 创建Gradio界面
|
169 |
+
with gr.Blocks(title="GeoGebra数学测试题", theme=gr.themes.Soft()) as app:
|
170 |
+
gr.Markdown("# GeoGebra数学应用能力测试")
|
171 |
+
gr.Markdown("### 说明:非整数答案请保留五位有效数字,直接输入数字或表达式")
|
172 |
+
|
173 |
+
# 动态生成题目输入框
|
174 |
+
input_components = []
|
175 |
+
with gr.Column():
|
176 |
+
for idx, q in enumerate(questions):
|
177 |
+
with gr.Row():
|
178 |
+
gr.Markdown(f"**{idx+1}. {q}**")
|
179 |
+
input_box = gr.Textbox(
|
180 |
+
label=f"题目 {idx+1} 答案",
|
181 |
+
placeholder="在此输入答案...",
|
182 |
+
container=False
|
183 |
+
)
|
184 |
+
input_components.append(input_box)
|
185 |
+
|
186 |
+
# 提交按钮与结果显示
|
187 |
+
gr.Markdown("---")
|
188 |
+
with gr.Row():
|
189 |
+
submit_btn = gr.Button("提交答案", variant="primary")
|
190 |
+
clear_btn = gr.Button("清空答案")
|
191 |
+
result_display = gr.Textbox(
|
192 |
+
label="答题结果",
|
193 |
+
lines=15,
|
194 |
+
placeholder="提交后将在此显示每道题的对错及总分..."
|
195 |
+
)
|
196 |
+
|
197 |
+
# 绑定事件
|
198 |
+
submit_btn.click(
|
199 |
+
fn=verify_answers,
|
200 |
+
inputs=input_components,
|
201 |
+
outputs=result_display
|
202 |
+
)
|
203 |
+
clear_btn.click(
|
204 |
+
fn=lambda: [""]*len(input_components),
|
205 |
+
inputs=None,
|
206 |
+
outputs=input_components
|
207 |
+
)
|
208 |
+
|
209 |
+
# 启动应用
|
210 |
+
if __name__ == "__main__":
|
211 |
+
app.launch()
|