File size: 4,349 Bytes
d87ca70
 
 
 
2cec8a0
d87ca70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import streamlit as st
from langchain import memory as lc_memory
from langsmith import Client
from streamlit_feedback import streamlit_feedback
from utils import get_expression_chain, get_retriever
from langchain_core.tracers.context import collect_runs
from dotenv import load_dotenv
import os

load_dotenv()

GROQ_API_KEY = os.getenv('GROQ_API_KEY')
HF_API_KEY = os.getenv("HF_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")




LANGSMITH_TRACING="true"
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY=os.getenv("LANGSMITH_API_KEY")
LANGSMITH_PROJECT="pr-smug-rancher-51"


client = Client()
st.set_page_config(page_title = "MEDICAL CHATBOT")
st.subheader(f"Hello! How can I assist you today!")

memory = lc_memory.ConversationBufferMemory(
    chat_memory=lc_memory.StreamlitChatMessageHistory(key="langchain_messages"),
    return_messages=True,
    memory_key="chat_history",
)

st.sidebar.markdown("## Feedback Scale")
feedback_option = (
    "thumbs" if st.sidebar.toggle(label="`Faces` ⇄ `Thumbs`", value=False) else "faces"
)

with st.sidebar:
    model_name = st.selectbox("**Model**", options=["llama-3.1-70b-versatile","gemma2-9b-it","gemma-7b-it","llama-3.2-3b-preview", "llama3-70b-8192", "mixtral-8x7b-32768"])
    temp = st.slider("**Temperature**", min_value=0.0, max_value=1.0, step=0.001)
    n_docs = st.number_input("**Number of retrieved documents**", min_value=0, max_value=10, value=5, step=1)
 
if st.sidebar.button("Clear message history"):
    print("Clearing message history")
    memory.clear()

retriever = get_retriever(n_docs=n_docs)
chain = get_expression_chain(retriever, model_name, temp)

for msg in st.session_state.langchain_messages:
    avatar = "🦜" if msg.type == "ai" else None
    with st.chat_message(msg.type, avatar=avatar):
        st.markdown(msg.content)

prompt = st.chat_input(placeholder="Describe your symptoms or medical questions ?")

if prompt:
    with st.chat_message("user"):
        st.write(prompt)
    
    with st.chat_message("assistant", avatar="πŸ’"):
        message_placeholder = st.empty()
        full_response = ""
        input_dict = {"input": prompt.lower()}
        used_docs = retriever.get_relevant_documents(prompt.lower())

        with collect_runs() as cb:
            for chunk in chain.stream(input_dict, config={"tags": ["MEDICAL CHATBOT"]}):
                full_response += chunk.content
                message_placeholder.markdown(full_response + "β–Œ") 
                memory.save_context(input_dict, {"output": full_response})

            st.session_state.run_id = cb.traced_runs[0].id
        message_placeholder.markdown(full_response)
        
        if used_docs:
            docs_content = "\n\n".join(
                [
                    f"Doc {i+1}:\n"
                    f"Source: {doc.metadata['source']}\n"
                    f"Title: {doc.metadata['title']}\n"
                    f"Content: {doc.page_content}\n"
                    for i, doc in enumerate(used_docs)
                ]
            )
            with st.sidebar:
                st.download_button(
                    label="Consulted Documents",
                    data=docs_content,
                    file_name="Consulted_documents.txt",
                    mime="text/plain",
                )

if st.session_state.get("run_id"):
    run_id = st.session_state.run_id
    feedback = streamlit_feedback(
        feedback_type=feedback_option,
        optional_text_label="[Optional] Please provide an explanation",
        key=f"feedback_{run_id}",
    )

    score_mappings = {
        "thumbs": {"πŸ‘": 1, "πŸ‘Ž": 0},
        "faces": {"πŸ˜€": 1, "πŸ™‚": 0.75, "😐": 0.5, "πŸ™": 0.25, "😞": 0},
    }

    scores = score_mappings[feedback_option]

    if feedback:
        score = scores.get(feedback["score"])

        if score is not None:
            feedback_type_str = f"{feedback_option} {feedback['score']}"

            feedback_record = client.create_feedback(
                run_id,
                feedback_type_str,
                score=score,
                comment=feedback.get("text"),
            )
            st.session_state.feedback = {
                "feedback_id": str(feedback_record.id),
                "score": score,
            }
        else:
            st.warning("Invalid feedback score.")