Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
import torch
|
4 |
from threading import Thread
|
5 |
-
import re # For cleaning unwanted tokens
|
6 |
|
7 |
# Load model and tokenizer
|
8 |
model_name = "GoofyLM/gonzalez-v1"
|
@@ -19,17 +18,8 @@ if tokenizer.pad_token is None:
|
|
19 |
|
20 |
# Define a custom chat template if one is not available
|
21 |
if tokenizer.chat_template is None:
|
22 |
-
|
23 |
-
{% if message['role'] == 'system' %}<|system
|
24 |
-
{{ message['content'] }}
|
25 |
-
{% elif message['role'] == 'user' %}<|user|>
|
26 |
-
{{ message['content'] }}
|
27 |
-
{% elif message['role'] == 'assistant' %}<|assistant|>
|
28 |
-
{{ message['content'] }}
|
29 |
-
{% endif %}
|
30 |
-
{% endfor %}
|
31 |
-
{% if add_generation_prompt %}<|assistant|>
|
32 |
-
{% endif %}"""
|
33 |
|
34 |
def respond(
|
35 |
message,
|
@@ -69,30 +59,26 @@ def respond(
|
|
69 |
pad_token_id=tokenizer.pad_token_id
|
70 |
)
|
71 |
|
72 |
-
# Start generation in
|
73 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
74 |
thread.start()
|
75 |
-
|
76 |
-
# Stream response
|
77 |
response = ""
|
78 |
for token in streamer:
|
79 |
response += token
|
80 |
-
|
81 |
-
cleaned_response = re.sub(r"<[^>]+>", "", response)
|
82 |
-
# Remove leading "Output:" if present (case-insensitive, line start)
|
83 |
-
cleaned_response = re.sub(r"(?i)^\s*output:\s*", "", cleaned_response)
|
84 |
-
yield cleaned_response.strip()
|
85 |
|
86 |
# Create Gradio interface
|
87 |
demo = gr.ChatInterface(
|
88 |
respond,
|
89 |
additional_inputs=[
|
90 |
gr.Textbox(value="", label="System message"),
|
91 |
-
gr.Slider(1,
|
92 |
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
|
93 |
gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"),
|
94 |
],
|
95 |
)
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
-
demo.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
import torch
|
4 |
from threading import Thread
|
|
|
5 |
|
6 |
# Load model and tokenizer
|
7 |
model_name = "GoofyLM/gonzalez-v1"
|
|
|
18 |
|
19 |
# Define a custom chat template if one is not available
|
20 |
if tokenizer.chat_template is None:
|
21 |
+
# Basic ChatML-style template
|
22 |
+
tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def respond(
|
25 |
message,
|
|
|
59 |
pad_token_id=tokenizer.pad_token_id
|
60 |
)
|
61 |
|
62 |
+
# Start generation in separate thread
|
63 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
thread.start()
|
65 |
+
|
66 |
+
# Stream response
|
67 |
response = ""
|
68 |
for token in streamer:
|
69 |
response += token
|
70 |
+
yield response
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Create Gradio interface
|
73 |
demo = gr.ChatInterface(
|
74 |
respond,
|
75 |
additional_inputs=[
|
76 |
gr.Textbox(value="", label="System message"),
|
77 |
+
gr.Slider(1, 215, value=72, label="Max new tokens"),
|
78 |
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
|
79 |
gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"),
|
80 |
],
|
81 |
)
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
+
demo. launch()
|