Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("GoofyLM/gonzalez-v1")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are Gonzalez.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load model and tokenizer locally
|
6 |
+
model_name = "GoofyLM/gonzalez-v1"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
torch_dtype=torch.float16, # Use float16 for efficiency
|
11 |
+
device_map="auto" # Automatically distribute across available GPUs/devices
|
12 |
+
)
|
13 |
|
14 |
def respond(
|
15 |
+
message,
|
16 |
+
history: list[tuple[str, str]],
|
17 |
+
system_message,
|
18 |
+
max_tokens,
|
19 |
+
temperature,
|
20 |
top_p,
|
21 |
):
|
22 |
+
# Format messages for the model
|
23 |
messages = [{"role": "system", "content": system_message}]
|
24 |
+
for user_msg, assistant_msg in history:
|
25 |
+
if user_msg:
|
26 |
+
messages.append({"role": "user", "content": user_msg})
|
27 |
+
if assistant_msg:
|
28 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
|
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
+
# Convert messages to model input format
|
32 |
+
chat_template = tokenizer.apply_chat_template(
|
33 |
+
messages,
|
34 |
+
tokenize=False,
|
35 |
+
add_generation_prompt=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# Tokenize the input
|
39 |
+
inputs = tokenizer(chat_template, return_tensors="pt").to(model.device)
|
40 |
+
|
41 |
+
# Generate response with streaming
|
42 |
+
input_length = inputs.input_ids.shape[1]
|
43 |
+
generated_tokens = []
|
44 |
+
|
45 |
+
# Set up generation parameters
|
46 |
+
gen_kwargs = {
|
47 |
+
"max_new_tokens": max_tokens,
|
48 |
+
"temperature": temperature,
|
49 |
+
"top_p": top_p,
|
50 |
+
"do_sample": temperature > 0,
|
51 |
+
"pad_token_id": tokenizer.eos_token_id,
|
52 |
+
}
|
53 |
+
|
54 |
+
# Stream the generation
|
55 |
response = ""
|
56 |
+
for output in model.generate(
|
57 |
+
**inputs,
|
58 |
+
**gen_kwargs,
|
59 |
+
streamer=transformers.TextStreamer(tokenizer, skip_prompt=True),
|
|
|
|
|
|
|
60 |
):
|
61 |
+
# Skip input tokens
|
62 |
+
if len(output) <= input_length:
|
63 |
+
continue
|
64 |
+
|
65 |
+
# Get new tokens
|
66 |
+
new_tokens = output[input_length:]
|
67 |
+
decoded = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
68 |
+
response = decoded
|
69 |
yield response
|
70 |
|
|
|
|
|
|
|
|
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
+
gr.Textbox(value="You are a Gonzalez-v1.", label="System message"),
|
75 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
77 |
gr.Slider(
|
78 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
|
|
|
|
|
|
|
|
79 |
),
|
80 |
],
|
81 |
)
|
82 |
|
|
|
83 |
if __name__ == "__main__":
|
84 |
+
demo.launch()
|