FlameF0X commited on
Commit
59e7020
·
verified ·
1 Parent(s): 494e2f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -41
app.py CHANGED
@@ -1,64 +1,84 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("GoofyLM/gonzalez-v1")
8
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
 
 
 
 
 
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are Gonzalez.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=72, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
 
 
 
 
4
 
5
+ # Load model and tokenizer locally
6
+ model_name = "GoofyLM/gonzalez-v1"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(
9
+ model_name,
10
+ torch_dtype=torch.float16, # Use float16 for efficiency
11
+ device_map="auto" # Automatically distribute across available GPUs/devices
12
+ )
13
 
14
  def respond(
15
+ message,
16
+ history: list[tuple[str, str]],
17
+ system_message,
18
+ max_tokens,
19
+ temperature,
20
  top_p,
21
  ):
22
+ # Format messages for the model
23
  messages = [{"role": "system", "content": system_message}]
24
+ for user_msg, assistant_msg in history:
25
+ if user_msg:
26
+ messages.append({"role": "user", "content": user_msg})
27
+ if assistant_msg:
28
+ messages.append({"role": "assistant", "content": assistant_msg})
 
 
29
  messages.append({"role": "user", "content": message})
30
 
31
+ # Convert messages to model input format
32
+ chat_template = tokenizer.apply_chat_template(
33
+ messages,
34
+ tokenize=False,
35
+ add_generation_prompt=True
36
+ )
37
+
38
+ # Tokenize the input
39
+ inputs = tokenizer(chat_template, return_tensors="pt").to(model.device)
40
+
41
+ # Generate response with streaming
42
+ input_length = inputs.input_ids.shape[1]
43
+ generated_tokens = []
44
+
45
+ # Set up generation parameters
46
+ gen_kwargs = {
47
+ "max_new_tokens": max_tokens,
48
+ "temperature": temperature,
49
+ "top_p": top_p,
50
+ "do_sample": temperature > 0,
51
+ "pad_token_id": tokenizer.eos_token_id,
52
+ }
53
+
54
+ # Stream the generation
55
  response = ""
56
+ for output in model.generate(
57
+ **inputs,
58
+ **gen_kwargs,
59
+ streamer=transformers.TextStreamer(tokenizer, skip_prompt=True),
 
 
 
60
  ):
61
+ # Skip input tokens
62
+ if len(output) <= input_length:
63
+ continue
64
+
65
+ # Get new tokens
66
+ new_tokens = output[input_length:]
67
+ decoded = tokenizer.decode(new_tokens, skip_special_tokens=True)
68
+ response = decoded
69
  yield response
70
 
 
 
 
 
71
  demo = gr.ChatInterface(
72
  respond,
73
  additional_inputs=[
74
+ gr.Textbox(value="You are a Gonzalez-v1.", label="System message"),
75
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
76
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
77
  gr.Slider(
78
+ minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
 
 
 
 
79
  ),
80
  ],
81
  )
82
 
 
83
  if __name__ == "__main__":
84
+ demo.launch()