Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,77 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
-
# Load model and tokenizer
|
6 |
model_name = "GoofyLM/gonzalez-v1"
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
model_name,
|
10 |
-
|
11 |
-
|
12 |
)
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def respond(
|
15 |
-
message,
|
16 |
-
history: list[tuple[str, str]],
|
17 |
-
system_message,
|
18 |
-
max_tokens,
|
19 |
-
temperature,
|
20 |
top_p,
|
21 |
):
|
22 |
-
#
|
23 |
messages = [{"role": "system", "content": system_message}]
|
|
|
24 |
for user_msg, assistant_msg in history:
|
25 |
if user_msg:
|
26 |
messages.append({"role": "user", "content": user_msg})
|
27 |
if assistant_msg:
|
28 |
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
# Tokenize the input
|
39 |
-
inputs = tokenizer(chat_template, return_tensors="pt").to(model.device)
|
40 |
-
|
41 |
-
# Generate response with streaming
|
42 |
-
input_length = inputs.input_ids.shape[1]
|
43 |
-
generated_tokens = []
|
44 |
-
|
45 |
-
# Set up generation parameters
|
46 |
-
gen_kwargs = {
|
47 |
-
"max_new_tokens": max_tokens,
|
48 |
-
"temperature": temperature,
|
49 |
-
"top_p": top_p,
|
50 |
-
"do_sample": temperature > 0,
|
51 |
-
"pad_token_id": tokenizer.eos_token_id,
|
52 |
-
}
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
**inputs,
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
yield response
|
70 |
|
|
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
-
gr.Textbox(value="You are
|
75 |
-
gr.Slider(
|
76 |
-
gr.Slider(
|
77 |
-
gr.Slider(
|
78 |
-
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
79 |
-
),
|
80 |
],
|
81 |
)
|
82 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
import torch
|
4 |
+
from threading import Thread
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
model_name = "GoofyLM/gonzalez-v1"
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
model_name,
|
10 |
+
device_map="auto",
|
11 |
+
torch_dtype=torch.float16
|
12 |
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Set pad token if missing
|
16 |
+
if tokenizer.pad_token is None:
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
18 |
|
19 |
def respond(
|
20 |
+
message,
|
21 |
+
history: list[tuple[str, str]],
|
22 |
+
system_message,
|
23 |
+
max_tokens,
|
24 |
+
temperature,
|
25 |
top_p,
|
26 |
):
|
27 |
+
# Build conversation messages
|
28 |
messages = [{"role": "system", "content": system_message}]
|
29 |
+
|
30 |
for user_msg, assistant_msg in history:
|
31 |
if user_msg:
|
32 |
messages.append({"role": "user", "content": user_msg})
|
33 |
if assistant_msg:
|
34 |
messages.append({"role": "assistant", "content": assistant_msg})
|
35 |
+
|
36 |
messages.append({"role": "user", "content": message})
|
37 |
|
38 |
+
# Format prompt using chat template
|
39 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
41 |
+
|
42 |
+
# Set up streaming
|
43 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Configure generation parameters
|
46 |
+
do_sample = temperature > 0 or top_p < 1.0
|
47 |
+
generation_kwargs = dict(
|
48 |
**inputs,
|
49 |
+
streamer=streamer,
|
50 |
+
max_new_tokens=max_tokens,
|
51 |
+
temperature=temperature,
|
52 |
+
top_p=top_p,
|
53 |
+
do_sample=do_sample,
|
54 |
+
pad_token_id=tokenizer.pad_token_id
|
55 |
+
)
|
56 |
+
|
57 |
+
# Start generation in separate thread
|
58 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
59 |
+
thread.start()
|
60 |
+
|
61 |
+
# Stream response
|
62 |
+
response = ""
|
63 |
+
for token in streamer:
|
64 |
+
response += token
|
65 |
yield response
|
66 |
|
67 |
+
# Create Gradio interface
|
68 |
demo = gr.ChatInterface(
|
69 |
respond,
|
70 |
additional_inputs=[
|
71 |
+
gr.Textbox(value="You are Gonzalez.", label="System message"),
|
72 |
+
gr.Slider(1, 2048, value=72, label="Max new tokens"),
|
73 |
+
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
|
74 |
+
gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"),
|
|
|
|
|
75 |
],
|
76 |
)
|
77 |
|