import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch from threading import Thread # Load model and tokenizer model_name = "GoofyLM/gonzalez-v1" model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set pad token if missing if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Define a custom chat template if one is not available if tokenizer.chat_template is None: # Basic ChatML-style template tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}" def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Build conversation messages messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Format prompt using chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Set up streaming streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Configure generation parameters do_sample = temperature > 0 or top_p < 1.0 generation_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=do_sample, pad_token_id=tokenizer.pad_token_id ) # Start generation in separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream response response = "" for token in streamer: response += token yield response # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(1, 215, value=72, label="Max new tokens"), gr.Slider(0.1, 4.0, value=0.7, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo. launch()