Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from base64 import b64encode
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
| 6 |
+
from huggingface_hub import notebook_login
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
# For video display:
|
| 9 |
+
from IPython.display import HTML
|
| 10 |
+
from matplotlib import pyplot as plt
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from torch import autocast
|
| 14 |
+
from torchvision import transforms as tfms
|
| 15 |
+
from tqdm.auto import tqdm
|
| 16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 17 |
+
import os
|
| 18 |
+
from device import torch_device,vae,text_encoder,unet,tokenizer,scheduler,token_emb_layer,pos_emb_layer,position_embeddings
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
| 23 |
+
logging.set_verbosity_error()
|
| 24 |
+
|
| 25 |
+
def pil_to_latent(input_im):
|
| 26 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
| 29 |
+
return 0.18215 * latent.latent_dist.sample()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def latents_to_pil(latents):
|
| 33 |
+
# batch of latents -> list of images
|
| 34 |
+
latents = (1 / 0.18215) * latents
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
image = vae.decode(latents).sample
|
| 37 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 38 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 39 |
+
images = (image * 255).round().astype("uint8")
|
| 40 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 41 |
+
return pil_images
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def set_timesteps(scheduler, num_inference_steps):
|
| 45 |
+
scheduler.set_timesteps(num_inference_steps)
|
| 46 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def orange_loss(image):
|
| 50 |
+
# Convert the image to a NumPy array
|
| 51 |
+
#image = image.float() # Convert to a more standard data type (float32)
|
| 52 |
+
#image_np = image.detach().cpu().numpy() # Use .detach() and .cpu() to ensure compatibility
|
| 53 |
+
|
| 54 |
+
# Extract the orange channel (e.g., Red and Green channels)
|
| 55 |
+
orange_channel = image[:, 0, :, :] + image[:, 1, :, :]
|
| 56 |
+
|
| 57 |
+
# Calculate the mean intensity of the orange channel
|
| 58 |
+
#orange_mean = np.mean(orange_channel)
|
| 59 |
+
|
| 60 |
+
# Define the target mean intensity you desire
|
| 61 |
+
target_mean = 0.8 # Replace with your desired mean intensity
|
| 62 |
+
|
| 63 |
+
# Calculate the loss based on the squared difference from the target
|
| 64 |
+
loss = torch.abs(orange_channel- target_mean).mean()
|
| 65 |
+
|
| 66 |
+
# Convert the loss to a PyTorch tensor
|
| 67 |
+
#loss = torch.tensor(loss, dtype=image.dtype)
|
| 68 |
+
|
| 69 |
+
return loss
|