Spaces:
Build error
Build error
app.py
CHANGED
|
@@ -1 +1,115 @@
|
|
| 1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
#final
|
| 4 |
+
import gradio as gr
|
| 5 |
+
#import json
|
| 6 |
+
#from difflib import Differ
|
| 7 |
+
import ffmpeg
|
| 8 |
+
#import os
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
#import time
|
| 11 |
+
|
| 12 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h"
|
| 13 |
+
headers = {"Authorization": "Bearer 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"}
|
| 14 |
+
|
| 15 |
+
#convert video to audio
|
| 16 |
+
video_path = Path("/content/gdrive/My Drive/AI/videoedit/ShiaLaBeouf.mp4")
|
| 17 |
+
audio_memory, _ = ffmpeg.input(video_path).output('-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
| 18 |
+
|
| 19 |
+
#calling the hosted model
|
| 20 |
+
def query_api(audio_bytes: bytes):
|
| 21 |
+
"""
|
| 22 |
+
Query for Huggingface Inference API for Automatic Speech Recognition task
|
| 23 |
+
"""
|
| 24 |
+
payload = json.dumps({
|
| 25 |
+
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
|
| 26 |
+
"parameters": {
|
| 27 |
+
"return_timestamps": "char",
|
| 28 |
+
"chunk_length_s": 10,
|
| 29 |
+
"stride_length_s": [4, 2]
|
| 30 |
+
},
|
| 31 |
+
"options": {"use_gpu": False}
|
| 32 |
+
}).encode("utf-8")
|
| 33 |
+
|
| 34 |
+
response = requests.request(
|
| 35 |
+
"POST", API_URL, headers=headers, data=payload)
|
| 36 |
+
json_reponse = json.loads(response.content.decode("utf-8"))
|
| 37 |
+
return json_reponse
|
| 38 |
+
|
| 39 |
+
#Getting transcripts using wav2Vec2 huggingface hosted accelerated inference
|
| 40 |
+
#sending audio file in request along with stride and chunk length information
|
| 41 |
+
model_response = query_api(audio_memory)
|
| 42 |
+
|
| 43 |
+
#model response has both - transcripts as well as character timestamps or chunks
|
| 44 |
+
transcription = model_response["text"].lower()
|
| 45 |
+
chnk = model_response["chunks"]
|
| 46 |
+
|
| 47 |
+
#creating lists from chunks to consume downstream easily
|
| 48 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
| 49 |
+
for chunk in chnk]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
#getting word timestams from character timestamps
|
| 53 |
+
def get_word_timestamps(timestamps):
|
| 54 |
+
words, word = [], []
|
| 55 |
+
letter_timestamp, word_timestamp, words_timestamp = [], [], []
|
| 56 |
+
for idx,entry in enumerate(timestamps):
|
| 57 |
+
word.append(entry[0])
|
| 58 |
+
letter_timestamp.append(entry[1])
|
| 59 |
+
if entry[0] == ' ':
|
| 60 |
+
words.append(''.join(word))
|
| 61 |
+
word_timestamp.append(letter_timestamp[0])
|
| 62 |
+
word_timestamp.append(timestamps[idx-1][2])
|
| 63 |
+
words_timestamp.append(word_timestamp)
|
| 64 |
+
word, word_timestamp, letter_timestamp = [], [], []
|
| 65 |
+
|
| 66 |
+
words = [word.strip() for word in words]
|
| 67 |
+
return words, words_timestamp
|
| 68 |
+
|
| 69 |
+
words, words_timestamp = get_word_timestamps(timestamps)
|
| 70 |
+
#words = [word.strip() for word in words]
|
| 71 |
+
|
| 72 |
+
print(f"Total words in the audio transcript is:{len(words)}, transcript word list is :{words}")
|
| 73 |
+
print(f"Total Word timestamps derived fromcharacter timestamp are :{len(words_timestamp)}, Word timestamps are :{words_timestamp}")
|
| 74 |
+
|
| 75 |
+
#creating list from input gif transcript
|
| 76 |
+
gif = "don't let your dreams be dreams"
|
| 77 |
+
giflist = gif.split()
|
| 78 |
+
|
| 79 |
+
#getting index of gif words in main transcript
|
| 80 |
+
def get_gif_word_indexes(total_words_list, gif_words_list):
|
| 81 |
+
if not gif_words_list:
|
| 82 |
+
return
|
| 83 |
+
# just optimization
|
| 84 |
+
lengthgif_words_list = len(gif_words_list)
|
| 85 |
+
firstgif_words_list = gif_words_list[0]
|
| 86 |
+
for idx, item in enumerate(total_words_list):
|
| 87 |
+
if item == firstgif_words_list:
|
| 88 |
+
if total_words_list[idx:idx+lengthgif_words_list] == gif_words_list:
|
| 89 |
+
yield tuple(range(idx, idx+lengthgif_words_list))
|
| 90 |
+
|
| 91 |
+
#getting gif indexes from the generator
|
| 92 |
+
giflist_indxs = list(list(get_gif_word_indexes(words, giflist))[0])
|
| 93 |
+
|
| 94 |
+
#getting start and end timestamps for gif transcript
|
| 95 |
+
def get_gif_timestamps(giflist_indxs):
|
| 96 |
+
#giflist_indxs = list(list(get_gif_word_indexes(words, giflist))[0])
|
| 97 |
+
min_idx = min(giflist_indxs)
|
| 98 |
+
max_idx = max(giflist_indxs)
|
| 99 |
+
|
| 100 |
+
gif_words_timestamp = words_timestamp[min_idx : max_idx+1]
|
| 101 |
+
start_seconds, end_seconds = gif_words_timestamp[0][0], gif_words_timestamp[-1][-1]
|
| 102 |
+
return start_seconds, end_seconds
|
| 103 |
+
|
| 104 |
+
#getting start and end timestamps for a gif video
|
| 105 |
+
start_seconds, end_seconds = get_gif_timestamps(giflist_indxs)
|
| 106 |
+
|
| 107 |
+
#extracting the video and building and serving a .gif image
|
| 108 |
+
def generate_gif(start_seconds, end_seconds):
|
| 109 |
+
final_clip = video.subclip(start_seconds, end_seconds)
|
| 110 |
+
#final_clip.write_videofile("/content/gdrive/My Drive/AI/videoedit/gif1.mp4")
|
| 111 |
+
final_clip.write_gif("/content/gdrive/My Drive/AI/videoedit/gif1.gif",)
|
| 112 |
+
final_clip.close()
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
generate_gif(start_seconds, end_seconds)
|