Spaces:
Runtime error
Runtime error
| diff --git a/models/stylegan2/op/fused_act.py b/models/stylegan2/op/fused_act.py | |
| index 973a84f..6854b97 100644 | |
| --- a/models/stylegan2/op/fused_act.py | |
| +++ b/models/stylegan2/op/fused_act.py | |
| import os | |
| import torch | |
| from torch import nn | |
| +from torch.nn import functional as F | |
| from torch.autograd import Function | |
| from torch.utils.cpp_extension import load | |
| -module_path = os.path.dirname(__file__) | |
| -fused = load( | |
| - 'fused', | |
| - sources=[ | |
| - os.path.join(module_path, 'fused_bias_act.cpp'), | |
| - os.path.join(module_path, 'fused_bias_act_kernel.cu'), | |
| - ], | |
| -) | |
| +#module_path = os.path.dirname(__file__) | |
| +#fused = load( | |
| +# 'fused', | |
| +# sources=[ | |
| +# os.path.join(module_path, 'fused_bias_act.cpp'), | |
| +# os.path.join(module_path, 'fused_bias_act_kernel.cu'), | |
| +# ], | |
| +#) | |
| class FusedLeakyReLUFunctionBackward(Function): | |
| class FusedLeakyReLU(nn.Module): | |
| def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
| - return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) | |
| + if input.device.type == "cpu": | |
| + if bias is not None: | |
| + rest_dim = [1] * (input.ndim - bias.ndim - 1) | |
| + return ( | |
| + F.leaky_relu( | |
| + input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2 | |
| + ) | |
| + * scale | |
| + ) | |
| + | |
| + else: | |
| + return F.leaky_relu(input, negative_slope=0.2) * scale | |
| + | |
| + else: | |
| + return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) | |
| diff --git a/models/stylegan2/op/upfirdn2d.py b/models/stylegan2/op/upfirdn2d.py | |
| index 7bc5a1e..5465d1a 100644 | |
| --- a/models/stylegan2/op/upfirdn2d.py | |
| +++ b/models/stylegan2/op/upfirdn2d.py | |
| import os | |
| import torch | |
| +from torch.nn import functional as F | |
| from torch.autograd import Function | |
| from torch.utils.cpp_extension import load | |
| -module_path = os.path.dirname(__file__) | |
| -upfirdn2d_op = load( | |
| - 'upfirdn2d', | |
| - sources=[ | |
| - os.path.join(module_path, 'upfirdn2d.cpp'), | |
| - os.path.join(module_path, 'upfirdn2d_kernel.cu'), | |
| - ], | |
| -) | |
| +#module_path = os.path.dirname(__file__) | |
| +#upfirdn2d_op = load( | |
| +# 'upfirdn2d', | |
| +# sources=[ | |
| +# os.path.join(module_path, 'upfirdn2d.cpp'), | |
| +# os.path.join(module_path, 'upfirdn2d_kernel.cu'), | |
| +# ], | |
| +#) | |
| class UpFirDn2dBackward(Function): | |
| class UpFirDn2d(Function): | |
| ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) | |
| - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
| - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
| + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
| + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
| ctx.out_size = (out_h, out_w) | |
| ctx.up = (up_x, up_y) | |
| class UpFirDn2d(Function): | |
| def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
| - out = UpFirDn2d.apply( | |
| - input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) | |
| - ) | |
| + if input.device.type == "cpu": | |
| + out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
| + | |
| + else: | |
| + out = UpFirDn2d.apply( | |
| + input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) | |
| + ) | |
| return out | |
| def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
| def upfirdn2d_native( | |
| input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 | |
| ): | |
| + _, channel, in_h, in_w = input.shape | |
| + input = input.reshape(-1, in_h, in_w, 1) | |
| + | |
| _, in_h, in_w, minor = input.shape | |
| kernel_h, kernel_w = kernel.shape | |
| def upfirdn2d_native( | |
| in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
| ) | |
| out = out.permute(0, 2, 3, 1) | |
| + out = out[:, ::down_y, ::down_x, :] | |
| + | |
| + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
| + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
| - return out[:, ::down_y, ::down_x, :] | |
| + return out.view(-1, channel, out_h, out_w) | |