Spaces:
Running
on
A100
Running
on
A100
File size: 10,102 Bytes
6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 6a4178d b72fbba 6a4178d ace6ed9 6a4178d ace6ed9 bf8afaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os, json, re, traceback
import gradio as gr
from PIL import Image
import torch
# --------------------------
# Config (via Space secrets)
# --------------------------
# ADAPTER_ID: your fine-tune adapter repo (PEFT). Example: GrassData/cliptagger-12b
# BASE_ID: the Gemma-3 VLM base you fine-tuned from. Example: google/gemma-3-12b-it (gated)
# HF_TOKEN: user access token that has access to BASE_ID (if gated)
ADAPTER_ID = os.environ.get("MODEL_ID", os.environ.get("ADAPTER_ID", "GrassData/cliptagger-12b"))
BASE_ID = os.environ.get("BASE_ID", "google/gemma-3-12b-it")
HF_TOKEN = os.environ.get("HF_TOKEN")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# --------------------------
# Prompts (your spec)
# --------------------------
SYSTEM_PROMPT = (
"You are an image annotation API trained to analyze YouTube video keyframes. "
"You will be given instructions on the output format, what to caption, and how to perform your job. "
"Follow those instructions. For descriptions and summaries, provide them directly and do not lead them with "
"'This image shows' or 'This keyframe displays...', just get right into the details."
)
USER_PROMPT = """You are an image annotation API trained to analyze YouTube video keyframes. You must respond with a valid JSON object matching the exact structure below.
Your job is to extract detailed **factual elements directly visible** in the image. Do not speculate or interpret artistic intent, camera focus, or composition. Do not include phrases like "this appears to be", "this looks like", or anything about the image itself. Describe what **is physically present in the frame**, and nothing more.
Return JSON in this structure:
{
"description": "A detailed, factual account of what is visibly happening (4 sentences max). Only mention concrete elements or actions that are clearly shown. Do not include anything about how the image is styled, shot, or composed. Do not lead the description with something like 'This image shows' or 'this keyframe is...', just get right into the details.",
"objects": ["object1 with relevant visual details", "object2 with relevant visual details", ...],
"actions": ["action1 with participants and context", "action2 with participants and context", ...],
"environment": "Detailed factual description of the setting and atmosphere based on visible cues (e.g., interior of a classroom with fluorescent lighting, or outdoor forest path with snow-covered trees).",
"content_type": "The type of content it is, e.g. 'real-world footage', 'video game', 'animation', 'cartoon', 'CGI', 'VTuber', etc.",
"specific_style": "Specific genre, aesthetic, or platform style (e.g., anime, 3D animation, mobile gameplay, vlog, tutorial, news broadcast, etc.)",
"production_quality": "Visible production level: e.g., 'professional studio', 'amateur handheld', 'webcam recording', 'TV broadcast', etc.",
"summary": "One clear, comprehensive sentence summarizing the visual content of the frame. Like the description, get right to the point.",
"logos": ["logo1 with visual description", "logo2 with visual description", ...]
}
Rules:
- Be specific and literal. Focus on what is explicitly visible.
- Do NOT include interpretations of emotion, mood, or narrative unless it's visually explicit.
- No artistic or cinematic analysis.
- Always include the language of any text in the image if present as an object, e.g. "English text", "Japanese text", "Russian text", etc.
- Maximum 10 objects and 5 actions.
- Return an empty array for 'logos' if none are present.
- Always output strictly valid JSON with proper escaping.
- Output **only the JSON**, no extra text or explanation.
"""
# --------------------------
# Load base + adapter (PEFT)
# --------------------------
def load_model_stack():
from transformers import AutoProcessor, AutoTokenizer, AutoConfig, AutoModelForCausalLM
from peft import PeftModel
# Prefer loading processor from BASE_ID (has preproc files). If you've vendored
# processor files into the adapter repo, you can switch to ADAPTER_ID here.
try:
processor = AutoProcessor.from_pretrained(
BASE_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
)
except TypeError:
# Some processor classes don't accept use_fast
processor = AutoProcessor.from_pretrained(
BASE_ID, token=HF_TOKEN, trust_remote_code=True
)
# Sanity check: ADAPTER should not be CLIP-only
cfg = AutoConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN, trust_remote_code=True)
if cfg.__class__.__name__.lower().startswith("clip"):
raise RuntimeError(
f"MODEL_ID/ADAPTER_ID ({ADAPTER_ID}) resolves to a CLIP/encoder config "
"and cannot be used with AutoModelForCausalLM. Point to your PEFT adapter "
"repo (Gemma-3 VLM adapters) or a full causal VLM checkpoint."
)
base = AutoModelForCausalLM.from_pretrained(
BASE_ID,
token=HF_TOKEN,
device_map="auto",
torch_dtype=DTYPE,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(
base,
ADAPTER_ID,
token=HF_TOKEN,
)
# Merge adapters for faster inference (optional)
try:
model = model.merge_and_unload()
except Exception:
# If merge isn’t supported, we keep PEFT wrapper
pass
tokenizer = getattr(processor, "tokenizer", None)
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(
BASE_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
)
return processor, tokenizer, model
LOAD_ERROR = None
processor = tokenizer = model = None
try:
processor, tokenizer, model = load_model_stack()
except Exception as e:
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
# --------------------------
# Inference
# --------------------------
def build_messages(image: Image.Image):
return [
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
{"role": "user", "content": [{"type": "image", "image": image},
{"type": "text", "text": USER_PROMPT}]}
]
def generate_json(image: Image.Image):
if image is None:
return "Please upload an image.", None, False
if model is None or processor is None:
msg = (
"❌ Model failed to load.\n\n"
f"{LOAD_ERROR or 'Unknown error. Check BASE_ID/ADAPTER_ID/HF_TOKEN.'}\n"
"• Ensure HF_TOKEN belongs to an account with access to the BASE_ID (if gated).\n"
"• Ensure MODEL_ID/ADAPTER_ID points to a Gemma-3 VLM PEFT adapter (not CLIP).\n"
"• Optionally vendor processor files into your adapter repo."
)
return msg, None, False
# Prepare chat prompt
if hasattr(processor, "apply_chat_template"):
prompt = processor.apply_chat_template(
build_messages(image), add_generation_prompt=True, tokenize=False
)
else:
# Fallback join (rare for Gemma-3)
msgs = build_messages(image)
prompt = ""
for m in msgs:
role = m["role"].upper()
for chunk in m["content"]:
if chunk["type"] == "text":
prompt += f"{role}: {chunk['text']}\n"
elif chunk["type"] == "image":
prompt += f"{role}: [IMAGE]\n"
# Tokenize with vision
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
# Generate with fixed params
gen_kwargs = dict(
max_new_tokens=2000,
temperature=0.1,
eos_token_id=getattr(tokenizer, "eos_token_id", None),
)
# Ask for JSON-only if supported by the model head
# (Some trust_remote_code models accept response_format)
try:
gen_kwargs["response_format"] = {"type": "json_object"}
except Exception:
pass
with torch.inference_mode():
out = model.generate(**inputs, **gen_kwargs)
# Decode
if hasattr(processor, "decode"):
text = processor.decode(out[0], skip_special_tokens=True)
else:
text = tokenizer.decode(out[0], skip_special_tokens=True)
# Best-effort: trim any preamble
if USER_PROMPT in text:
text = text.split(USER_PROMPT)[-1].strip()
# Parse JSON
try:
parsed = json.loads(text)
return json.dumps(parsed, indent=2), parsed, True
except Exception:
# Try to recover a top-level {...}
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
if m:
try:
parsed = json.loads(m.group(0))
return json.dumps(parsed, indent=2), parsed, True
except Exception:
pass
return text, None, False
# --------------------------
# UI
# --------------------------
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 + Adapter)") as demo:
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT)\nUpload an image to get **strict JSON** annotations.")
if LOAD_ERROR:
with gr.Accordion("Startup Error Details", open=False):
gr.Markdown(f"```\n{LOAD_ERROR}\n```")
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(type="pil", label="Upload Image", image_mode="RGB")
annotate_btn = gr.Button("Annotate", variant="primary")
with gr.Column(scale=1):
out_code = gr.Code(label="Model Output (JSON or error text)")
out_json = gr.JSON(label="Parsed JSON")
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
@spaces.GPU # ensures a GPU task is registered
def on_submit(img):
text, js, ok = generate_json(img)
return text, js, ok
annotate_btn.click(on_submit, inputs=[image], outputs=[out_code, out_json, ok_flag])
demo.queue(max_size=32).launch()
|